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Abstract—360-degree images/videos have been dramatically in-
creasing in recent years. But the high resolution makes it difficult
to be transported, compressed and stored, and thus constrains
the development of 360-degree images/videos. Therefore, it is
important to study how popular coding technologies influence the
quality of 360-degree images. In this paper, we present a study
on subjective assessment of compressed 360-degree images and
investigate whether existing objective image quality assessment
(IQA) methods can effectively evaluate the quality of compressed
360-degree images. We first construct the largest compressed
360-degree image database (CVIQD2018) including 16 source
images and 528 compressed ones with three prevailing coding
technologies. Then, we implement 16 full reference (FR) IQA
metrics, which include 10 traditional IQA metrics for 2D images
and 3 PSNR-based metrics for 360-degree images, as well as 5 no
reference (NR) IQA metrics and calculate the correlation between
each above metric and subjective assessment in terms of three
commonly used performance indices. The experiment results
reveal structure information, visual saliency information and
compensation for geometric distortion are crucial for evaluating
the quality of compressed 360-degree images.

I. INTRODUCTION

360-degree images/videos, also called panoramic, omnidi-
rectional or virtual reality (VR) images/videos, can provide
immersive experience of real-world scenes in VR systems.
With the rapid development of VR technologies in recent
years, 360-degree images/videos have been widely applied in
social media, live concert events or sport events, and VR
movies. According to the report released by Huawei ilLab
[1], more than 90% of VR content is in the form of 360-
degree videos. The explosive growth in 360-degree videos
has attracted many researchers’ interests. However, 360-degree
image/video quality assessment, which can be the evaluation
criterion for many image processing techniques such as im-
age stitching, denoising and coding, has been rarely studied.
What’s more, the low quality video content will aggravate the
untoward effect such as motion sickness in the VR system,
which dramatically degrades the quality of experience (QoE)
[2]. Therefore, it is important to study the image quality
assessment (IQA) for 360-degree image/video.

Both objective and subjective methods are important for
IQA on 360-degree images/videos. For objective IQA, there

are already some attempts to extend the traditional 2-
dimensional (2D) IQA methods to 360-degree images. It
is known that the spherical image should be mapped to a
rectangular plane for easily storage and visualization. The
equirectangular projection is widely used for VR content
representation. When the users view the content in VR, the
equirectangular image is remapped to the sphere domain.
Hence, the current studies mainly focus on the geometric
distortion occurring in the projection. For example, Yu et al.
proposed the Spherical PSNR (S-PSNR) [3], which computes
PSNR for the set of points uniformly distributed on a spherical
surface instead of on the rectangular domain. Sun et al. [4]
noticed that the geometric distortion degree of equirectangular
image is proportional to the cosine power of the latitude of
corresponding pixels, then proposed the Weighted Spherical
PSNR (WS-PSNR), which the value of each pixel is multiplied
by the cosine power of the latitude of the corresponding pixel.
Zakharchenko et al. proposed Craster Parabolic Projection
PSNR (CPP-PSNR) [5]. They remapped both the distorted
and reference images to a Craster parabolic projection and
computed the PSNR in that domain.

For subjective IQA, it still lacks a reliable 360-degree image
database to evaluate the effect of the 360-degree IQA models
as well as the effect of successful 2D IQA models. Upenik
et al. built a small 360-degree image database including 4
reference images along with 96 distorted images [6]. But
considering the number of 360-degree images is too small, it
is urgent to provide a large and reliable database to offer the
baseline for existing and following 360-degree IQA models.

The study in this paper is an extension of our previous
work in [7]. In this paper, we attempt to build a new 360-
degree image database to promote the studies of IQA for VR
images. Since the high resolution of 360-degree images/videos
makes it hard for transport, compression and storage, we
mainly focus on how coding technologies affect 360-degree
image/video quality. First, we construct a compressed VR
image quality database (CVIQD2018), which consists of 16
source 360-degree images and 528 corresponding compressed
images derived from three popular coding technologies, JPEG,
H.264/AVC and H.265/HEVC. The Single Stimulus (SS)
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Fig. 1: The source 360-degree spherical images in CVIQA2018 database. (a) teaching building; (b) playground; (c) square; (d)
lake; (e) sculpture; (f) street lamp; (g) gate; (h) bicycles; (j) bridge; (k) road; (1) classroom; (m) multimedia room; (n) rally;

(o) expressway; (p) town; (q) valley.

method is adopted for gathering subject ratings because ob-
servers can only see one 360-degree image in the head-
mounted display. Then we compare 13 full reference (FR)
IQA metrics, which include 10 state-of-art IQA metrics for
2D images and 3 PSNR-based metrics for 360-degree images,
and 5 no reference (NF) IQA metrics in terms of subjective
scores using this database. Results reveal that SSIM, IW-SSIM
and VSI metrics achieve a good performance on 360-degree
images. PSNR-based IQA metrics for 360-degree images are
superior to PSNR metric.

The remainder of this paper is organized as follows. Section
IT introduces the subjective assessment methodology of 360-
degree images, followed by data processing and analysis for
the database. Section III compares and evaluates the object
IQA metrics on the database in terms of the correlation
between objective predictions and subjective scores. Section
IV gives the concluding remarks.

II. SUBJECTIVE QUALITY ASSESSMENT

This section is used to build the CVIQD2018 database. First,
the images in the database are described. Next, subjective
evaluation is applied to collect the mean opinion scores
(MOSs) from subjects. Finally, the MOSs are presented and
discussed.

A. Compressed VR Image Quality Database

The database includes sixteen source images, where twelve
images are shot by Insta360 4K Spherical VR Video Camera

and the other four images are extracted from the test video
of the JVET. The source images contain diverse scenes such
as landscapes, towns, objects and persons, as shown in Figure
1. All the source images have the same resolution of 4096 x
2048.

Three coding technologies are deployed in the database. The
first one is the Joint Photographic Experts Group (JPEG) [8],
which is a commonly used method of lossy compression for
digital images. Typically, JPEG can achieve 10:1 compression
with little perceptible loss in image quality, which makes it
one of the most commonly employed compressed formats for
photographic images on the World Wide Web. The second
and third coding technologies are H.264/AVC (Advanced
Video Coding) [9] and H.265/HEVC (High Efficiency Video
Coding) [10], which were developed for video compression.
As compared with H.264/AVC, the H.265/HEVC can lead to
more than 50% performance gains in most cases. According
to this, these three coding technologies are introduced in this
work to establish the VR image quality database.

To be more specific, we use the JPEG to compress each
reference image with quality factors ranging from 50 to 0 with
an interval of -5, and use the H.264/AVC and H.265/HEVC
with factors from 30 to 50 with an interval of 2. On this
basis, we generate 33 compressed images from each source
360-degree image. Overall, a database including 16 reference
images and 528 compressed images is built.



B. Subjective Experiment Methodology

In the following, we present the general methodology and
configuration of the subjective test.

o Method: Several subjective testing methodologies for
assessing image quality have been defined by ITU-R
BT500-11 [11], including Single-Stimulus (SS), Double-
Stimulus Impairment Scale (DSIS) and Paired Compari-
son (PC). Since the viewers only see a part of the 360-
degree image that falls into the field of view (FoV) of the
head mounted display (HMD), we adopt the SS method
in our test.

« Participants: The study conducted by [12] suggests that
at least 15 subjects are required in the subjective quality
assessment for VR images. Here, 20 subjects including
14 males and 6 females participated in the subjective test.
Their ages range from 21 to 25. All participants have
normal or corrected-to-normal vision.

o Test Condition: Unlike other subjective experiments
conducted on the traditional displays, we do not need to
consider the environment factors, e.g. viewing distance
[13], ambient luminance [14], etc. The experiment was
conducted in an empty room with no noise. The subjects
sat on a swivel chair so they could turn their viewing
direction freely.

o Test Device: We used the HTC VIVE as the HMD
because of its excellent graphic display and high pre-
cision tracking ability. For easy operation, we designed
an interaction system to automatically display the test
images and collect the subjective quality scores using
Unity3D software. The subjects used the controller to
switch images and select the perceptual scores. Unity3D
was run on a computer with 4.00GHz Intel Core i7
processor, 32GB main memory, and Nvidia GeForce
GTX 1080 graphics.

¢ Quality Rating: The scales ranging from the lowest to
highest perceptual quality are divided into 10 levels. The
higher value means the better quality.

Before starting the experiment, the goal of this subjective
test and instruction were introduced to each subject. The
whole experiment involves two stages. The first stage is pilot
experiment. Subjects previewed some example images which
would not appear in the formal experiment so they would
have an idea on how to provide their scores on the image
quality. The second stage is formal experiment. 20 subjects
participated in the test. They were asked to provide their
perceptual opinions. The presentation order of the images was
randomized for each subject. After the subjective experiment,
we collected the scores of all the images rated by all the
subjects and done further analysis.

C. Data Processing and Analysis

From the subjective test, we have collected all the subjects’
scores. We follow the MOS calculation method as detailed
in [11]. Let m;; denote the raw subjective scores assigned by
subject ¢ to image j. First, the score m;; needs to be converted
to a Z-score Z;; using
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Fig. 2: Histogram of MOS in the CVIQD2018 database. The x
axis represents the MOS and the y axis represents the number
of images falling into the certain range of MOS. The range of
each bin is from the value of bin minus 5 to the value of bin
plus 5. For example, the bin of MOS 20 means the MOSs of
images falling into this bin range from 15 to 25.
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where NN; denotes the number of test image viewed by subject
i.

After that, we discard scores from unreliable subjects by
using the subject rejection procedure specified in the ITU-R
BT500-11 [11]. Then Z-score Z;; needs to be linearly rescaled
to lie in the range of [0,100]:

;j _ 100(Z;; + 3) 3)
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Finally, the MOS of the image j is calculated by averaging
the Z;; from M; subjects:

M’v
1 N
J i=1

In order to have a clear observation of those MOS values, we
drew the histogram of the MOSs, which is illustrated in Figure
2. As seen, the MOSs are mainly centralized from scores 30"
to 70 and the number of MOSs which are more than ”80 is
none. This means that the visual effect is still barely satisfied
with those compressed 360 degree spherical images with a
resolutions of 4K. That is, more advanced coding technologies
and higher resolutions are required to improve the quality of
experience (QoE) in the VR applications.



TABLE I: Performance comparison on 16 FR IQA models. We highlight the best three performing models in each column.

Metrics JPEG AVC HEVC ALL
SRCC PLCC RMSE SRCC PLCC RMSE SRCC PLCC RMSE SRCC PLCC RMSE
PSNR 0.7342  0.8643 85866 | 0.7572 0.7592 8.0448 | 0.7169 0.7215 8.3279 | 0.7320 0.7662  9.0397
WS-PSNR 0.7520 0.8772  8.1974 | 0.7690 0.7708  7.8743 | 0.7389 0.7428 8.0515 | 0.7467 0.7741  8.9066
CPP-PSNR | 0.7604 0.8802 8.1019 | 0.7726 0.7748 7.8143 | 0.7430 0.7469 7.9974 | 0.7498 0.7755 8.8816
S-PSNR 0.7729  0.8886  7.8302 | 0.7815 0.7854 7.6506 | 0.7540 0.7578 7.8471 | 0.7574 0.7819  8.7695
SSIM 0.9334 09749 3.7986 | 0.9451 0.9457 4.0165 | 0.9220 0.9232 4.6219 | 0.8857 0.8972 6.2140
MS-SSIM 0.9140 0.9628 4.6101 0.8794  0.8805 5.8583 | 0.8604 0.8610 6.1165 | 0.8762 0.8875 6.4836
IW-SSIM 0.9337 09736 3.8998 | 0.9471 0.9485 3.9157 | 0.9315 0.9338 4.3044 | 0.8947 0.9010 6.1031
ADD-SSIM | 09114 09705 4.1192 | 0.8568 0.8563 6.3829 | 0.8408 0.8409 6.5081 0.8637  0.8780  6.7347
VSNR 0.8169 0.9082  7.1457 | 0.7910 0.7930 7.5301 0.7814  0.7811  7.5094 | 0.7691 0.7830 8.7504
IGM 0.9106 09594 4.8172 | 0.8796 0.8797 5.8779 | 0.8568 0.8584 6.1700 | 0.8588 0.8704  6.9252
VSI 0.9315 09690 4.2166 | 0.9190 0.9224 4.7736 | 0.8821 0.8900 5.4831 | 0.8927 09138 5.7126
GMSD 0.9132 09648 4.4904 | 0.8661 0.8632 6.2413 | 0.8693 0.8677 5.9780 | 0.8451 0.8626 7.1169
PSIM 0.9089 09632 45877 | 0.8241 0.8241 7.0007 | 0.8182 0.8213 6.8605 | 0.8585 0.8841 6.5751
TABLE II: Performance comparison on 5 NR IQA models.
Metrics JPEG AVC HEVC ALL
SRCC PLCC RMSE SRCC PLCC RMSE SRCC PLCC RMSE SRCC PLCC RMSE
BRISQUE | -0.8489  0.9091 7.1137 -0.7193  0.7294 8.4558 -0.7151  0.7104 8.4646 -0.7448  0.7641 9.0751
GMLF -0.4484  0.7801 10.6822 | -0.1748 0.4864  10.8000 | -0.0232  0.1491 11.8923 | -0.2246 0.6134 11.1101
NIQE -0.8585  0.8525 8.9237 -0.8358  0.8467 6.5773 -0.8681  0.8649 6.0370 -0.5126  0.5329  11.9038
QAC 0.8680  0.9537 5.1324 0.8681 0.8681 6.1348 0.8764  0.8749 5.8249 0.8299  0.8681 6.9820
SISBLIM -0.8433  0.9186 6.7479 -0.8122  0.8547 6.4159 -0.5041  0.5620 9.9474 -0.6554  0.7439 9.4014

III. COMPARISON OF OBJECTIVE QUALITY ASSESSMENT
MODELS

In this section, both FR and NR IQA metrics are imple-
mented to explore whether existing objective IQA models
can effectively evaluate the quality of compressed 360-degree
images. Among FR IQA metrics, there are 3 PSNR-based IQA
metrics which are specifically designed for 360-degree images
and 10 traditional IQA metrics which are commonly used in
2D natural images. There are 5 general-purpose NR IQA met-
rics including NSS-based metrics and learning-based metrics,
which are popular for 2D natural images. Then, we compute
the correlation between each quality metric and subjective
assessment in terms of three commonly used performance
indices. After that, we give the results and discussion.

A. Full Reference IQA metrics

FR IQA models for 2D natural images have been compre-
hensively developed over the past decades. Many successful
FR IQA metrics have been proposed to automatically pre-
dict the visual quality via a variety of strategies. The main
difference existing in 2D images and 360-degree images is
geometric distortion occurring in the projection. But both
reference and distorted 360-degree images exist the geometric
distortion and the current IQA metrics can effectively evaluate
the similarity of the two images, it is deserved to investigate

how the salient IQA metrics for 2D images perform in the 360-
degree images database. Here, we implement 10 FR successful
IQA models which achieve good and reliable performance in
popular 2D IQA databases. These IQA models are Peak signal-
to-noise ratio (PSNR), Structural Similarity (SSIM) [15],
Multi-SSIM  (MS-SSIM) [16], Information Content Weight
SSIM (IW-SSIM) [17], Analysis of Distortion Distribution
for Pooling in SSIM (ADD-SSIM) [18], Visual Signal-to-
Noise ratio (VSNR) [19], Internal Generative Mechanism
(IGM) [20], Visual saliency-based index (VSI) [21], Gradient
Magnitude Similarity deviation (GMSD) [22], and Perceptual
Similarity (PSIM) [23], respectively.

Meanwhile, several IQA models for 360-degree images
based on PSNR have been proposed. PSNR is a simple and
widely used fidelity measure due to its simplicity and math-
ematical convenience. These PSNR-based algorithms extend
PSNR to 360-degree images via compensating the sampling
disequilibrium caused by geometric distortion. Spherical P-
SNR (S-PSNR) [3] computes PSNR for the set of points
uniformly distributed on a spherical surface, where corre-
sponding pixels from a reference and a distorted image are
reprojected to this set. Weighted Spherical PSNR (WS-PSNR)
[4] computes PSNR of the reference and distorted images
when multiplying the weight to each pixel. The weight of
each pixel is calculated by cosine power of latitude of the



corresponding pixel. Craster Parabolic Projection PSNR (CPP-
PSNR) [5] computes the PSNR of images on the Craster
parabolic projection. Therefore, both the reference image and
the distorted image should be remapped to a Craster parabolic
projection before.

B. No reference IQA metrics

Although FR IQA metrics have achieved remarkable perfor-
mance over the decades, the requirement for a corresponding
non-distorted reference image makes these metrics infeasible
in practical applications, since it is hard, even impossible in
most cases to obtain an ideal reference image. In contrast,
NR IQA, which takes only the distorted image to be assessed
as input, is more realistic and receives substantial attention in
recent years. Therefore, the NR IQA is also very important for
360-degree images and it is worth exploring the performance
of current NR IQA metrics in the 360-degree images. Five
general-purpose NR IQA metrics are compared in this paper,
which are Blind/Referenceless Image Spatial Quality Evalua-
tor (BRISQUE) [24], Natural Image Quality Evaluator (NIQE)
[25], Gradient Magnitude and Laplacian Features (GMLF)
[26], Quality-Aware Clusting (QAC) [27] and Six-step Blind
Metric (SISBLIM) [28], respectively. BRISQUE and NIQE is
based on natural scene statistics (NSS). GMLF metric utilizes
the joint statistics of the gradient magnitude (GM) map and
the Laplacian of Gaussian (LOG) response. QAC metric learns
a set of centroids on different quality levels described by FR-
IQA models. The learned centroids are then used as codebook
to infer the quality of a given image. SISBLIM combines the
single quality prediction of six emerging distortion types and
joint effects of different distortion sources.

C. Performance of the IQAs

Before calculating performance of IQAs we list above, we
map the predictions of the IQA metrics to MOSs through a
five parameter logistic function for nonlinear removal:

f(z) :/81(% ! ) + Bazx + B )
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The three statistical indices are applied for the consistency
performance comparison with predicted scores obtained from
objective IQA metrics and subjective MOSs. They are respec-
tively Spearman rank correlation coefficient (SRCC), Pearsons
linear Correlation Coefficient (PLCC), Root mean square
error (RMSE). The three indices have different meanings and
demonstrate the prediction performance from different aspects.
To specify, SRCC indicates the prediction monotonicity of
the quality metric, PLCC reflects the prediction accuracy, and
RMSE points out the prediction consistency. An excellent IQA
metric is expected to obtain the value of SRCC and PLCC
close to 1, yet the value near O for RMSE. We list performance
of 13 FR IQA models in the Table I and 5 NR IQA models in
the Table II on the single and overall compression distortion.
The best three performance models are highlighted in each
column in Table I.

We first observe the performance of the PSNR and PSNR-
based IQA models for 360-degree images. From Table I,

the performance of all PSNR-based IQA metrics has been
improved when comparing with PSNR, which shows the effect
of compensating the geometric distortion in the 360-degree
image. WS-PSNR and CPP-PSNR are both approximate com-
pensation for geometric distortion. But S-PSNR is directly
calculated on the spherical surface, which means the geometric
distortion can be ignored. Therefore, the performance of S-
PSNR is the best among these PSNR-based IQAs. However,
PSNR performs not well on content-independent distortions
and lots of studies reveal that PSNR does not agree with
experience of human vision system, which causes all the
PSNR-based IQA metrics to be inferior to the traditional
successful IQA models for 2D natural images.

Then we compare the performance of 10 traditional FR
IQA models for 2D natural images. From Table I, we find
that SSIM, IW-SSIM and VSI metrics achieve the best three
performance in terms of these traditional FR IQA models.
More specially, SSIM and IW-SSIM perform better than other
methods on each single distortion type, but the performance
drops off on the overall database. That is because the SSIM
metric detects structural change which is the main distortion
existing in each compression technology. But for different
compression technologies, the laws in structural distortion are
not same and this reduces the whole performance of SSIM-
based metrics. VSI metric achieves the superior performance
on the overall performance but is slightly worse than SSIM
and IW-SSIM metrics on each compression technology, which
indicates the features extracted by VSI metric are less affected
by the compression types than SSIM-based metrics. It inspires
us that the visual saliency feature, which is extracted by VSI
metric, is a good image quality feature for 360-degree images.
What’s more, the saliency model used in VSI metric is not
specially designed for 360-degree images. Since we lack the
saliency model for 360-degree images now, we hope that the
saliency feature for 360-degree images can achieve the better
performance.

Lastly, we compare the performance of 5 NR IQA models
for 2D natural images. Although these NR IQA metrics can
achieve competitive performance on several prevalent IQA
databases consisting of 2D natural images, the values of PLCC
and SRCC are saliently inferior than the performance of
FR IQA metrics on the CVIQD2018 database. The reason
may be that the FR IQA metrics take both the reference
and distorted 360-degree image as inputs and may offset the
effect of geometric distortion to some extent, but the NF IQA
metrics only take the distorted images as input and are severely
affected by geometric distortion. More specially, BRISQUE
and NIQE are both the NSS-based NR IQA metrics. It is
doubtful whether natural scene statistics for a 360-degree
image obey a specific distribution and this issue deserves
to explore in our future studies. QAC needs to partition the
distorted images into overlapped patches. But these patches
are heterogeneous distortion for 360-degree images because
the degree of geometric distortion of the two poles is much
greater than that of the equator, which makes QAC metric
less effective. GMLF utilizes the joint statistics of GM map



and LOG response and SISBLIM considers multiple common
distortions, which may be also less effective on 360-degree
images.

From the above discussion, we can make the conclusion
that some traditional FR IQA models for 2D natural images
are still robust when applied to 360-degree images. But as we
see, there is still much space to improve the performance for
evaluating image quality of 360-degree images. First, the struc-
ture and visual saliency information are particular important
for IQA models of 360-degree images. Then the compensation
for geometric distortion improves the performance. Lastly,
the characteristic of the 360-degree image should still be
considered. For example, not the whole image can be viewed
at once and users can only see the content in the viewport. This
is extremely different from 2D images. It may be solved by
adding the weight representing the viewing frequency to each
pixel. Some researchers have tried this approach [3], [12] and
improved the performance. But it is difficult to extend to other
metrics when lacking a reliable saliency algorithm for 360-
degree images. Therefore, it deserves deeper explorations for
designing better objective IQA models of 360-degree images,
especially for NR IQA models.

IV. CONCLUSION

This paper has comprehensively investigated an emerging
quality assessment problem of compressed 360-degree spher-
ical images in VR display systems. We built the largest com-
pressed VR image quality database (CVIQD2018), including
16 sources images and 528 compressed ones under three
coding technologies, i.e. JPEG, H.264/AVC and H.265/HEVC.
Moreover, we compare 13 FR IQA models including 3 PSNR-
based models for 360-degree images as well as 5 NR IQA
models. The IW-SSIM and VSI achieve high consistency with
the subjective ratings. The results also show that structure
information, visual saliency information and compensation
for geometric distortion are crucial factors when designing
objective IQA models for 360-degree images.

V. ACKNOWLEDGEMENT

This work was supported by the National Science Founda-
tion of China (61521062, 61527804) and Science and Technol-
ogy Commission of Shanghai Municipality (15DZ0500200).

REFERENCES

[1] HUAWEI iLab, “VR Data Report,” http://www-file.huawei.com/-/
media/CORPORATE/PDF/ilab/vr-ar-cn.pdf, accessed Jan 29, 2018.

[2] J.-W. Lin, H. B.-L. Duh, D. E. Parker, H. Abi-Rached, and T. A. Furness,
“Effects of field of view on presence, enjoyment, memory, and simulator
sickness in a virtual environment,” in Virtual Reality, 2002. Proceedings.
IEEE. 1EEE, 2002, pp. 164-171.

[3] M. Yu, H. Lakshman, and B. Girod, “A framework to evaluate om-
nidirectional video coding schemes,” in Mixed and Augmented Reality
(ISMAR), 2015 IEEE International Symposium on. 1EEE, 2015, pp.
31-36.

[4] S. Yule, A. Lu, and Y. Lu, “Ws-psnr for 360 video objective quality
evaluation,” MPEG Joint Video Exploration Team, vol. 116, 2016.

[5] V. Zakharchenko, K. P. Choi, and J. H. Park, “Quality metric for
spherical panoramic video,” in Optics and Photonics for Information
Processing X, vol. 9970. International Society for Optics and Photonics,
2016, p. 99700C.

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

E. Upenik, M. Rerabek, and T. Ebrahimi, “On the performance of
objective metrics for omnidirectional visual content,” in Quality of
Multimedia Experience (QoMEX), 2017 Ninth International Conference
on. IEEE, 2017, pp. 1-6.

W. Sun, K. Gu, G. Zhai, S. Ma, W. Lin, and P. L. Callet, “Cviqd:
Subjective quality evaluation of compressed virtual reality images,” 2017
IEEE International Conference on Image Processing (ICIP), pp. 3450—
3454, 2017.

G. K. Wallace, “The jpeg still picture compression standard,” IEEE
transactions on consumer electronics, vol. 38, no. 1, pp. Xviii—xxxiv,
1992.

T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview
of the h. 264/avc video coding standard,” IEEE Transactions on circuits
and systems for video technology, vol. 13, no. 7, pp. 560-576, 2003.
G. J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (hevc) standard,” IEEE Transactions on
circuits and systems for video technology, vol. 22, no. 12, pp. 1649—
1668, 2012.

I. Recommendation, “500-11,methodology for the subjective assessment
of the quality of television pictures, recommendation itu-r bt. 500-11,”
ITU Telecom. Standardization Sector of ITU, vol. 7, 2002.

M. Xu, C. Li, Z. Wang, and Z. Chen, “Visual quality assessment of
panoramic video,” arXiv preprint arXiv:1709.06342, 2017.

K. Gu, M. Liu, G. Zhai, X. Yang, and W. Zhang, “Quality assessment
considering viewing distance and image resolution,” IEEE Transactions
on Broadcasting, vol. 61, no. 3, pp. 520-531, 2015.

W. Sun, G. Zhai, X. Min, Y. Liu, S. Ma, J. Liu, J. Zhou, and
X. Liu, “Dynamic backlight scaling considering ambient luminance for
mobile energy saving,” in Multimedia and Expo (ICME), 2017 IEEE
International Conference on. IEEE, 2017, pp. 25-30.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” /IEEE
transactions on image processing, vol. 13, no. 4, pp. 600-612, 2004.
Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural simi-
larity for image quality assessment,” in Signals, Systems and Computers,
2004. Conference Record of the Thirty-Seventh Asilomar Conference on,
vol. 2. Ieee, 2003, pp. 1398-1402.

Z. Wang and Q. Li, “Information content weighting for perceptual image
quality assessment,” IEEE Transactions on Image Processing, vol. 20,
no. 5, pp. 1185-1198, 2011.

K. Gu, S. Wang, G. Zhai, W. Lin, X. Yang, and W. Zhang, “Analysis
of distortion distribution for pooling in image quality prediction,” IEEE
Transactions on Broadcasting, vol. 62, no. 2, pp. 446-456, 2016.

D. M. Chandler and S. S. Hemami, “Vsnr: A wavelet-based visual
signal-to-noise ratio for natural images,” IEEE transactions on image
processing, vol. 16, no. 9, pp. 2284-2298, 2007.

J. Wu, W. Lin, G. Shi, and A. Liu, “Perceptual quality metric with in-
ternal generative mechanism,” IEEE Transactions on Image Processing,
vol. 22, no. 1, pp. 43-54, 2013.

L. Zhang, Y. Shen, and H. Li, “Vsi: A visual saliency-induced index
for perceptual image quality assessment,” IEEE Transactions on Image
Processing, vol. 23, no. 10, pp. 42704281, 2014.

W. Xue, L. Zhang, X. Mou, and A. C. Bovik, “Gradient magnitude
similarity deviation: A highly efficient perceptual image quality index,”
IEEE Trans Image Process, vol. 23, no. 2, pp. 684-695, 2014.

K. Gu, L. Li, H. Lu, X. Min, and W. Lin, “A fast reliable image quality
predictor by fusing micro-and macro-structures,” IEEE Transactions on
Industrial Electronics, vol. 64, no. 5, pp. 3903-3912, 2017.

A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image
quality assessment in the spatial domain,” IEEE Transactions on Image
Processing, vol. 21, pp. 46954708, 2012.

A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a “completely
blind” image quality analyzer,” IEEE Signal Process. Lett., vol. 20, pp.
209-212, 2013.

W. Xue, X. Mou, L. Zhang, A. C. Bovik, and X. Feng, “Blind image
quality assessment using joint statistics of gradient magnitude and
laplacian features,” IEEE Transactions on Image Processing, vol. 23,
pp. 4850-4862, 2014.

W. Xue, L. Zhang, and X. Mou, “Learning without human scores for
blind image quality assessment,” 2013 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 995-1002, 2013.

K. Gu, G. Zhai, X. Yang, and W. Zhang, “Hybrid no-reference quality
metric for singly and multiply distorted images,” IEEE Transactions on
Broadcasting, vol. 60, pp. 555-567, 2014.



