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ABSTRACT

It is widely known that the human visual system (HVS) ap-
plies multi-resolution analysis to the scenes we see. In fact,
many of the best image quality metrics, e.g. MS-SSIM and
IW-PSNR/SSIM are based on multi-scale models. Howev-
er, in existing multi-scale type of image quality assessment
(IQA) methods, the resolution levels are fixed. In this pa-
per, we examine the problem of selecting optimal levels in the
multi-resolution analysis to preprocess the image for percep-
tual quality assessment. According to the contrast sensitivity
function (CSF) of the HVS, the sampling of visual informa-
tion by the human eyes approximates a low-pass process. For
images, the amount of information we can extract depends on
the size of the image (or the object(s) inside) as well as the
viewing distance. Therefore, we proposed a wavelet transfor-
m based adaptive high-frequency clipping (AHC) model to
approximate the effective visual information that enters the
HVS. After the high-frequency clipping, rather than process-
ing separately on each level, we transform the filtered images
back to their original resolutions for quality assessment. Ex-
tensive experimental results show that on various databases
(LIVE, IVC, and Toyama-MICT), performance of existing
image quality algorithms (PSNR and SSIM) can be substan-
tially improved by applying the metrics to those AHC model
processed images.

Index Terms— Image quality assessment (IQA), image
size, viewing distance, scale transform, high-frequency clip-

ping
1. INTRODUCTION

Image quality assessment (IQA) is an important research area
due to its possible application in the design and optimiza-
tion of various image processing algorithms. Generally, IQA
refers to both subjective assessment and objective assessmen-
t. The subjective assessment aims to obtain mean opinion
scores (MOSs) from subjective viewing test. Although the
subjective assessment is always known as the ultimate image
quality gauge, it is often too complicated and expensive for
practical applications. Last decades have witnessed the rise
of a large number of objective image quality metrics (IQMs),

among which PSNR and SSIM [1] are perhaps the most popu-
lar methods that have been integrated into many practical im-
age processing systems. In the current IQA research, the so
called multi-scale type of methods, e.g. MS-SSIM [2], IFC
[3], VIF [4], IW-PSNR/SSIM [5] and MIS-SSIM [6], as in-
spired by the multi-resolution property of the HVS, achieved
some of the best performance.

In the traditional study of IQA, the influence of subjective
viewing environments in different databases on the prediction
accuracies of objective IQA methods has been largely over-
looked. Lin et al pointed out in [7] that objective image qual-
ity metrics should take into account some significant external
factors, such as ambient illumination, display resolution, and
viewing distance. However, as a matter of fact, existing image
databases are quite diverse in terms of image sizes and view-
ing distances used in the subjective experiments [7]. In ITU-R
BT.500 [8], although the ratio between viewing distance and
image height is suggested, there is no recommendation of ap-
propriate image size, or resolution (DPI).

Realizing the impact of viewing distance and image size
on perceptual quality assessment, in our former work, we pro-
posed a self-adaptive scale transform (SAST) model [9] for
IQA metrics. The SAST model estimates the best scale pa-
rameter from the image size and viewing distance. And the
images are then resized (by low-pass filtering and sampling)
accordingly for better IQA performance. This approach is ef-
fective because as the viewing distance increases, the viewing
angel shrinks and less image details can be noticed. On the
other hand, it is obvious that by resizing the images, we essen-
tially discard part of the high resolution information. There-
fore, in this paper, we try to directly remove part of image
details using adaptive high-frequency clipping in wavelet sub-
bands. The AHC model filtered subband coefficients are then
synthesized back to an image at its original resolution to be
used by IQA methods.

The rest of this paper is organized as follows. In Sec-
tion 2, we first review some related researches and then pro-
pose the AHC model. In Section 3, the AHC model based
PSNR/SSIM are compared to some competitive IQA algo-
rithms on the LIVE database [10], IVC database [11], and
Toyama-MICT database [12]. Finally, Section 4 concludes
this paper.



2. THE PROPOSED AHC MODEL

It is suggested in [7] that the external factors, including image
size and viewing distance, can have considerable impacts on
the prediction performance of IQA algorithms. A simple, em-
pirical method [7] has been exploited for SSIM to determine
the downsampling scale S for evaluating images viewed from
a typical distance:

St =max(1,round(H/256)) (1)

with H being the image height.

As mentioned, human perception of images details is lim-
ited by both image size and viewing distance. The SAST
model [9] was recently proposed using the concept of human
visual angle and angle of gaze. The scale transform coeffi-
cient is defined as follows:
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where d is the viewing distance between the viewers and the
image X, and W is the image width. 6y and 6y represent
the human visual angles for horizontal and vertical directions,
respectively.

Accordingly, we can compute the scale transformed im-
age from X by low-pass filtering and sampling. We denote
the results as X/, with Z (= I or S) depending on the scale
parameter Sy or Sg.

When the ratio between image height and viewing dis-
tance (H/d) is small, image details cannot be observed. This
research aims to find the correspondence among the viewing
distance, image size, and the visible spatial frequency. To
that end, we first apply wavelet transform to decompose the
image X, as exemplified in Fig. 1 on the “lighthouse” image.
A weighting function is then introduced to assign different
weights to all the LH, HL. and HH subbands:

b- kt(L—l)

w(i,d,l) = 3)
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where L indicates the decomposition layer, and we set L = 4
in this paper. Namely, the number of total subbands is 12 ex-
cluding the LL subband. The coefficient 7 (= [LH, HL, HH])
represents the subband being processed. The model parame-
ters a (= 10), k (= 10), ¢t (= 2), and d (= 512) are empirically
assigned. The coefficient b favors the retaining of LH and HL
subbands over the HH subband on the same level:
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Then, each computed weight is compared with a threshold
(thr =1 in this work). If the weight is smaller than the thresh-

old, the corresponding subband is clipped out. Wavelet re-
construction is used to get final result X,. Note that although
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Fig. 1. Illustration of the “lighthouse” image and its wavelet de-
composition with four levels.

multi-resolution analysis is used inside the AHC model, the
final output is a single scale image with part of high-frequency
details properly erased.

Eventually, three pairs of improved PSNR; and SSIMy
(Z=1,85, and A) are computed as:

PSNR; = PSNR(X),,Y}) (5)

SSIMy = SSIM (X}, Y}3). (6)

where X/, and Y, are the preprocessed original and distorted
images, respectively.

3. EXPERIMENTAL RESULTS

The experiments are conducted on LIVE [10], IVC [11] and
Toyama-MICT [12] databases, because quite different view-
ing distances and image sizes were used in the subjective ex-
periments, as highlighted in Table 1.

We adopt the four-parameter logistic function suggested
by VQEG [13] as the nonlinear regression between the sub-

Table 1. Description of LIVE, IVC, and Toyama-MICT databases.

Database name | Image size (W xH) d/H Number
768x512
480x720
640x512
632x505
634 %505
618x453
610x488
627x482
634x438
vC 512x512 4 185

Toyama-MICT 768x512 6 168

LIVE 3~3.75 779




jective scores and the prediction scores of ten metrics PSNR,
PSNR;, PSNRg [9], IW-PSNR [5], PSNR,, SSIM, SSIMj,
SSIMg [9], IW-SSIM [5] and SSIM4:
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where x indicates the input score, ¢(z) is the mapped score,
and oy to oy are free parameters to be determined during the
curve fitting process.

Three commonly used performance metrics, Pearson Lin-
ear Correlation Coefficient (PLCC), Spearman Rank-Order
Correlation Coefficient (SROCC), and RMSE as suggested by
VQEG [13], are employed to further evaluate the proposed
AHC model based PSNR/SSIM metric and the other eight
IQA methods on LIVE, IVC, and Toyama-MICT databases.
Their performance values and directly average results are tab-
ulated in Table 2, and all the corresponding scatter plots are
displayed in Fig. 2. It can be found from those results that
the proposed AHC model can significantly improve the per-
formance of PSNR and SSIM. The improved metrics PSNR 5
and SSIMy have prediction accuracy comparable to the most
sophisticated metrics of IW-PSNR and IW-SSIM [5].

4. CONCLUSION

In this paper, we propose a new adaptive high-frequency
clipping (AHC) model to improve the performance of IQA
metrics. The AHC model is designed within the framework
of wavelet transform to remove part of the high-frequency
details of the image that is believed to be indiscernible to
the audiences at the viewing distance. Experimental results
on LIVE, IVC, and Toyama-MICT databases are provided
to demonstrate that the proposed AHC model can improve
the performance of PSNR and SSIM to the level of most
advanced image quality metrics, such as IW-PSNR and ITW-
SSIM in the literature.

In the very near future, our work will be devoted to a
higher-performance scale transform model for image quali-
ty assessment by properly integrating the proposed wavelet-
domain based AHC method with our early spatial-domain
based SAST model.
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Table 2. PLCC, SROCC, and RMSE values (after nonlinear regres-
sion) of PSNR, PSNR|, PSNRg, IW-PSNR, PSNR4, SSIM, SSIM;,
SSIMs, TW-SSIM, and SSIMa on LIVE, IVC, and Toyama-MICT
databases, and their directly average results.

LIVE database [10]
Metrics | PSNR ~ PSNR; PSNRs IW-PSNR PSNRj
PLCC 0.8701  0.9031 09137  0.9329 0.9295
SROCC | 0.8756 0.9056 0.9164  0.9328 0.9314
RMSE 13468 11.735 11.104  9.8394 10.077
Metrics | SSIM  SSIM;  SSIMs IW-SSIM  SSIMj
PLCC 0.9014 09251 0.9306 0.9425 0.9321
SROCC | 09104 09355 0.9446  0.9567 0.9477
RMSE 11.832 10.376  10.002  9.1317 9.8968
IVC database [11]
Metrics | PSNR ~ PSNR; PSNRs IW-PSNR PSNRj
PLCC | 0.7195 0.8912 0.8956  0.9055 0.9107
SROCC | 0.6887 0.8828 0.8893  0.8999 0.9019
RMSE | 0.8462 0.5527 0.5419 0.5170  0.5032
Metrics | SSIM  SSIM;  SSIMg IW-SSIM  SSIMa
PLCC | 0.7923 0.9122 0.9046  0.9228 0.9066
SROCC | 0.7785 0.9030 0.8912  0.9125 0.8957
RMSE | 0.7433  0.4993 0.5195 0.4693 0.5142
Toyama-MICT database [12]
Metrics | PSNR ~ PSNR; PSNRs IW-PSNR PSNRa
PLCC | 0.6352 0.8003 0.8355 0.8501 0.8649
SROCC | 0.6130 0.7942 0.8276  0.8475 0.8619
RMSE | 0.9665 0.7504 0.6876  0.6590  0.6286
Metrics | SSIM  SSIM;  SSIMs IW-SSIM  SSIMa
PLCC | 0.7962 0.8917 0.9079  0.9243 0.9142
SROCC | 0.7865 0.8844 0.9042  0.9202 0.9117
RMSE | 0.7571 0.5664 0.5247  0.4775 0.5071
Directly average results
Metrics | PSNR ~ PSNR; PSNRs IW-PSNR PSNRa
PLCC | 0.7416 0.8648 0.8816  0.8962 0.9017
SROCC | 0.7257 0.8609 0.8778  0.8934 0.8984
RMSE | 5.0937 4.3460 4.1111 3.6718  3.7361
Metrics | SSIM  SSIM;  SSIMs IW-SSIM  SSIMj
PLCC | 0.8300 0.9097 0.9143  0.9299 0.9176
SROCC | 0.8251 0.9076 0.9133  0.9298 0.9184
RMSE | 4.4443 38139 3.6820 3.3595 3.6394
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