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A B S T R A C T

As an extension of Discrete and Complex Wavelet Transform, Quaternion Wavelet Transform (QWT) has at-
tracted extensive attention in the past few years, because it can provide better analytic representation for 2D
images. The QWT of an image consists of four parts, i.e., one magnitude part and three phase parts. The mag-
nitude is nearly shift-invariant, which characterizes features at any spatial location, and the three phases re-
present the structure of these features. This indicates that QWT is more powerful in representing image struc-
tures, and thus is suitable for image quality evaluation. In this paper, an efficient and effective Camera Image
Quality Metric (CIQM) is proposed based on QWT, which is utilized to describe the intrinsic structures of an
image. For an image, it is first decomposed by QWT with three scales. Then, for each scale, the magnitude and
entropy of the subband coefficients, and natural scene statistics of the third phase are calculated. The magnitude
is utilized to describe the generalized spectral behavior, and the entropy is used to encode the generalized
information of distortions. Since the third phase of QWT is considered to be texture feature, the natural scene
statistics of the third phase of QWT is used to measure structure degradations in the proposed method. All these
features reflect the self-similarity and independency of image content, which can effectively reflect image dis-
tortions. Finally, random forest is utilized to build the quality model. Experiments conducted on three camera
image databases and two multiply distorted image databases have proved that CIQM outperforms the relevant
state-of-the-art models for both authentically distorted images and multiply distorted images.

1. Introduction

In many image processing fields, such as image restoration, image
compression and image recommend systems, image quality is the key
factor that determines the performance of the whole systems [1]. Fur-
thermore, it is important to evaluate image quality due to its ability to
guide and optimize various cloud and remote computing systems [6].
The most trustworthy method of evaluating image quality is subjective
rating because human is the end consumer. However, this is difficult to
operate in many real applications. Hence, objective image quality as-
sessment has got a huge development [2–5]. In the light of prior
knowledge on image distortions, no reference (NR) image quality as-
sessment (IQA) models can be classified into two classes, namely dis-
tortion-specific models and general purpose models [1]. Distortion-
specific models are designed for known distortion types, such as noise,
blockiness [7,10] and sharpness [9], so their usage is limited. By

contrast, general purpose models do not assume any prior distortion
types, so they can be widely used in practical scenarios. In this paper we
focus on NR general purpose IQA.

In the past few years, several blind general purpose image quality
metrics have been proposed [8,12–15,21,22]. Moorthy et al. used the
wavelet transform to construct the representative feature vector. Then
support vector regression (SVR) [46,47] was used to bulid the Blind
Image Quality Index (BIQI) [12]. Mittal et al. addressed the Natrual
Image Qualtiy Evaluator (NIQE) [13] model, which used a set of fea-
tures and fitted them to a multivariate Gaussian model (MVG). Then the
distance between MVG model and the statistical regularities model of
natural scene statistics (NSS) was used to produce the quality score. In
[16], the authors utilized the Gaussian Scale mixture model to model
the joint statistics of the wavelet coefficients of natural images to pro-
duce the Distortion Identification-based Image Verity and INtegrity
Evaluation (DIIVINE) metric. In [14], Saad et al. presented the BLind
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Image Integrity Notator using DCT Statistic (BLIINDS-II) model based
on the features from the NSS model of the image Discrete Cosine
Transform coefficients (DCT). Then Bayesian inference model was used
to produce the objective score. In [15], the authors addressed the Blind
Image Spatial QUality Evaluator (BRISQUE) based on spatial NSS of
locally normalized luminance coefficients, which worked under the
principle that distortions change the regular statistical properties of
natural images. Gu et al. proposed the NR Free Energy based Robust
Metric (NFERM) [17] model based on classical human visual system
(HVS) properties and free energy. Zhang et al. addressed the Integrated
Local Natural Image Quality Evaluator (IL-NIQE) [11], which in-
tegrated the features of natural image statistics derived from multiple
cues. A Bhattacharyya-like distance was used to measure the quality of
each distorted image patch. The Spatial Spectral Entropy-based Quality
(SSEQ) model was proposed by Liu et al. [18]. It utilized image entropy
features to measure the image structure distortions.

Developing a generalized blind image quality assessment metric is
still an open problem. On the one hand, few attempts have been made
to estimate camera images distortions [23]. On the other hand, most
existing general purpose blind IQA models have limitations, for ex-
ample, DIIVINE and BLIINDS-II metrics have high computing com-
plexity, BIQI metric generally produces poor performance and so on.
Furthermore, although most of aforementioned general purpose IQA
models work well on the conventional image database, they do not
work consistently well on authentically distorted images. Because most
of these image quality models have been devoted to images containing
simulated or single distortions, which are not designed for images
suffering from different distortion types in practical real scenarios [24].

In this paper, we propose a blind Camera Image Quality Metric
(CIQM) via modeling quaternion wavelet coefficients. There are few
relevant methods that use QWT for image quality evaluation. Chen
et al. proposed a full reference IQA method based on hybrid phase
congruency map, where QWT was exploited to extract the quaternion
phase congruency map to represent the essential image structures. And
complex phase congruency map was used as complementary visual
effects of detailed structure on IQA [31]. In [32,33], the authors ad-
dressed a reduced-reference metric based on the QWT coefficients from
information criteria. The probability density functions was used to
model the QWT coefficients as reduced-references. Information criteria
was used to obtain the number of distribution. Reduced-reference IQA
metric was obtained by comparing the probability density functions of
the reference image and the distributions of the distorted image of the
QWT subbands. Different from the previous works, which mainly deal
with synthetic distortions, the proposed method analyzes the QWT
coefficients to evaluate the quality of authentically distorted images.
Furthermore, the substantial high performance of the proposed model is
evaluated on both real distorted image databases and multiply distorted
image databases.

The remainder of this paper is organized as follows. We provide the

theoretical basis of the QWT in Section 2. Section 3 presents details of
the proposed blind camera quality evaluation algorithm. Results of the
CIQM algorithm on authentically distorted image databases and mul-
tiply distorted image databases are shown in Section 4. Section 5 gives
the general conclusions.

2. Quaternion wavelet transform

Real-world images typically consist of smooth regions and edges,
and they can be well characterized by their singularity structure. The
Discrete Wavelet Transform (DWT) is a multi-resolution analysis tool
that can be utilized to process singularity-rich signals [25].

Since DWT is lack of shift invariance and signal location informa-
tion, researchers have made a lot of efforts to develop Complex Wavelet
Transforms (CWT) to remedy these drawbacks. In [27], the authors
proposed the 2D dual-tree CWT using the 1D Hilbert Transform of
conventional 2D real DWT wavelets in different directions. Six complex
wavelets generated by 2D Dual-Tree complex wavelet transform are
shown in Fig. 1. However, each 2D dual-tree basis coefficient has only
one angle phase, which is insufficient for analyzing 2D signals [28]. To
overcome this drawback, quaternion wavelet transform was proposed
[26]. There are several ways to implement QWT. There are great dif-
ferences between the traditional quaternion transform and the used
QWT. The traditional quaternion is an expansion of complex, namely
hyper complex. And pure quaternion quaternion is widely used to re-
present color image, where the three channels of the color image (red,
green and blue) are represented by the three imaginary parts. Hence, it
is mainly used to handle color images. However, in our proposed
method, we adopt the dual-tree QWT proposed by Chan [36]. An ex-
tension of Hilbert Transform and analytic signal is used to extend the
1D Complex Wavelet Transforms to 2D. The imaginary and real parts of
the signal are a linear combination of the original signal and its partial
and complete Hilbert transforms. Let =y y y( 1, 2) be the real 2D signal,
the pair of complex signals generated by the complete 2D complex
analytic signal in space domain is defined as [26]:

= − + +f y f y f y f y f y j( ) [ ( ) ( )] [ ( ) ( )]Hi Hi Hi1 1 2 (1)

= + + −f y f y f y f y f y j( ) [ ( ) ( )] [ ( ) ( )]Hi Hi Hi2 1 2 (2)
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2 (5)

where f is a 2-D real value function, fHi is the Hilbert transform, fHi1 and

Fig. 1. 2D Dual-Tree Complex Wavelets [26,29,30,34]. Six wavelets
are shown in first row are the real part, and the imaginary part of
complex wavelets are shown in the second row. The third row shows
the magnitude of the six complex.
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fHi2 are the partial Hilbert transforms, ∗ deNotes 2D convolution. Ac-
cording to [26], in the spatial domain, the quaternionic analytic signal
of a real signal y can be defined as:

= + + +f y f y if y jf y kf y( ) ( ) ( ) ( ) ( )A
q

Hi Hi Hi1 2 (6)

The dual-tree QWT is a 4× redundant tight frame with horizontal,
vertical, and diagonal subband. The components of QWT wavelets can
be organized as the following matrix form:
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where φ x( )h and ψ x( )h denote the wavelet and scaling functions, re-
spectively. The wavelet functions φ x( )h and φ x( )g from two trees paly
the role of the real and imaginary parts of a complex analytic wavelet.
The imaginary wavelet φ x( )g is the 1-D HT of the real wavelet φ x( )h .
Every quaternion wavelet comprises four components that are 900 phase
shifts of each other in the vertical, horizontal, and both directions. Each
column of F corresponds to the four parts of QWT. Three quaternion
wavelets generated from the 2D dual-tree quaternion wavelet transform
are shown in Fig. 2. The dual-tree QWT has three phases which encode
the shifts of image features in horizontal and vertical direction, and
edge orientation mixtures and texture information [26]. Hence, QWT
has been widely used in multi-scale image analysis and processing
[31–33,35,36].

3. The proposed blind quality metric

In our work, a novel dual-tree QWT based blind camera image
quality assessment metric is proposed. Fig. 3 shows the flowchart of the
proposed metric. First, the input image I is decomposed by the qua-
ternion wavelet transform into wavelet subband coefficients Wi . Ac-
cording to a large number of experiment results, the test image is de-
composed into 3 scales which can acquire the best performance and
meantime maintain low complexity (The details will be discussed in
Section 4.1). Hence, we use QWT with 3 scales decomposition. Then,
for each scale, the magnitude, entropy and the natural scene statistics of
the third phase of the subbands are calculated to encode the image. The
magnitude is utilized to describe the generalized spectral behavior. And
the entropy and natural scene statistics of third phase are used to en-
code the generalized information of distortions. All of these properties
reflect the self-similarity and independency of image content. Finally,
random forest is utilized to predict the objective score of the input
image.

It has been demonstrated that QWT provides the richest scale-space
analysis with one near shift-invariant magnitude and three phases,
which can separate the information contained in the image better than
the classical DWT [31–33]. The QWT of an image at each point has one
magnitude and three phases. We first analyze the magnitude and en-
tropy of the QWT coefficients. The following equations are used to
compute the magnitude and entropy:
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where M N,s s stand for the width and length of the s-th subband, re-
spectively. W i j( , )s denotes the QWT coefficient of i j( , ), and p (·) is the
probability function of the QWT coefficients.

Fig. 4 shows distortion free images from CSIQ database [39]. And
Fig. 5 shows the magnitudes and entropies of the QWT coefficients of
the images in Fig. 4. It is observed from Fig. 5 that the magnitudes and
entropies of distortion free images have similar characteristics.

To illustrate the impact of magnitude and entropy of the QWT
coefficients on image quality, we give an example in Fig. 6. Fig. 6 shows
four different distorted images and their magnitudes and entropies of
the QWT coefficients. From Fig. 6, it is easily found that with the in-
crease of distortion degree, the greater the curve deviates from that of
the original image. Hence, the magnitude and entropy of QWT can be
used to characterize the quality degradation of an image.

For an image, Dual-Tree based QWT coefficients are approximately
analytic, so the magnitude q| | and three phases ϕ θ ψ( , , ) are approxi-
mately analytic [33]. The phase ϕ and θ provides small shifts of the
structure in the horizontal and vertical directions, respectively. From
the measure of divergences, it can be found that these two phases give a
poor detection of degradation [33]. Because very little degradation can
introduce these shifts, the measure is instable. However, the phase ψ
describes image texture details and achieves a more robust description
of an image. It is very useful for image structure analysis. It is well
known that image structure plays a key role in image quality evalua-
tion. These findings are similar to the study in [32,33]. Hence, we
conduct extensive experiments for the phase ψ.

According to the study of the phase ψ on the whole CSIQ image
database [39], we find that the phase ψ of undistorted natural images
shows Gaussian characteristic. Furthermore, the distribution changes
when the images encounters different types of distortions, as illustrated
in Fig. 7. It was found that a Generalized Gaussian Distribution (GGD)
can capture the distorted image statistics [15]. In this work, we utilize
the GGD to model the coefficients of these phases. The GGD function is

Fig. 2. Quaternion wavelets from the 2D dual-tree quaternion wavelet
transform frame [36]. The first row shows the vertical subband, and
the second row shows the horizontal subband, and the third row
shows the diagonal subband. The last column is the quaternion wa-
velet magnitude of each subband.
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Fig. 3. Flowchart of the proposed blind camera image quality metric.

Fig. 4. The Distortion free 30 images from the
CSIQ database [39].
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defined as follows:
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where α is the shape parameter that controls the distribution, μ denotes
the mean and
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and the gamma function Γ(·) is given by:
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∞ − −z t e dtΓ( ) z t

0
1
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where the parameter stands for standard deviation. In this model, we
utilize the zero mean GGD model to fit the ψ phase of QWT coefficients.
The zero mean GGD is given by:
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For each decomposition scale, a pair of parameters (α σ, 2) from a
GGD fit of the ψ phase of QWT coefficients can be obtained.

The input image is initially decomposed by QWT into subband
wavelet coefficients. High-high, low-high and high-low subbands are

Fig. 5. Magnitudes and entropies of the QWT coefficients of distortion free images from CSIQ database [39]. (a) The magnitudes of 30 original images from CSIQ database. (b) The
entropies of 30 original images from CSIQ database.

Fig. 6. Four images with different levels distortion together with their magnitudes and entropies of the QWT coefficients. (a)–(d) Denote original image and its different levels of
distortion images, (e) denotes their magnitudes and (f) denotes their entropies, respectively.
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used to calculate the features. Due to the similarity in the statistics of
low-high and high-low subbands at the same scale, we do not distin-
guish low-high and high-low subbands at the same scale. By decom-
posing an image with 3 scales, we have 6 subbands in total. For each
subband, the magnitude and entropy are calculated. The phase ψ de-
scribes image texture details and it gives a robust description of an
image. So we use the phase ψ as feature to describe the image. For each
decomposition scale, a pair of parameters (α σ, 2) from a GGD fit of the ψ
phase of QWT coefficients is generated. In our algorithm, we use 3
scales decomposition for each image to describe degradation char-
acteristics. Hence, three ψ phase features are used to describe image
texture details and three pair of parameters (α σ, 2) are used to capture
the ψ phase distortion information for an image. Hence, 21 features in
total, including 6 magnitude features, 6 entropy features and 9 phase
statistics features, are used to train the quality model.

After the feature extraction, random forest (RF) is utilized to learn
the regression model to predict quality score [37]. Considering a set of
extracted feature vector = ⋯w w w{ , , }n1 and s is the predicted score of
the test image, the training objective function of the i-th node of the t-th
decision tree ∈ ⋯t T{1, , } is defined as:

=∗
∈

θ Gargmaxi
θ T

i
i i (14)

whereTi controls the amount of randomness to train node i, and theGi is
defined as:

∑ ∑ ∑= −
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G w wlog(|Λ ( )|) ( log(|Λ ( )|))i
w P

s
j L R w P

s
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j (15)

where Λs is the conditional covariance matrix computed from prob-
abilistic linear fitting, Pi denotes the amount of training data for node i,
and P P,i

L
i
R stands for the left and right partition sets, respectively. Then,

the predicted score ̂s is computed by averaging the outputs of T re-
gression trees as:

̂ ∑=
=

s
T

p s w1 ( | )
t

T

t
1 (16)

4. Experimental results and analysis

4.1. Experimental settings

The experiments are conducted on the recently released Camera
Image Database (CID) [41], Realistic Blurred Image Database (RBID)
[40] and LIVE in the Wild Image Quality Challenge Database (LIVEW)
[42], which contain authentically distorted images. The CID database

contains 474 distorted images from 6 image sets under 36 scenarios,
and these images are captured by 79 different digital cameras. The
images in CID contain the typical distortions which depend on optics,
built in image processing pipeline and camera sensor type. The mean
opinion scores of the images in CID database are ranging from 0 to 100.
The RBID database consists of 586 images with resolutions ranging
from 2816 × 2112 to 640 × 480 pixels, which contains not only ty-
pical and easy to model blur cases, but also complex and authentic ones.
The images in RBID database are captured by a various of camera
apertures, scenes, varying exposure times and lighting conditions. And
mean opinion scores of the images in RBID database are ranging from 0
to 5. The LIVEW database contains 1162 authentically distorted images
captured by modern mobile cameras. The images in LIVEW contains
various realistic distortions, such as underexposure, overexposure,
compression errors, motion blur, blur and noise, and their mixtures.
And mean opinion scores of the images in LIVEW database are ranging
from 0 to 100.

In this paper, three criterions are adopted for performance measure,
including Pearson’s correlation coefficient (PLCC), Spearman’s rank
ordered correlation coefficient (SRCC) and root mean square error
(RMSE) [48]. The prediction monotonicity is measured by SRCC. And
the prediction accuracy is measured by PLCC and RMSE. Before com-
puting these values, a nonlinear fitting function with five parameters is
employed to map objective quality scores to ground truth subjective
scores [48]:

= ⎛
⎝

−
+

⎞
⎠

+ +−f y λ
e

λ y λ( ) 1
2

1
1 λ y λ1 ( ) 4 52 3 (17)

where y denotes the predicted objective score; f y( ) stands for the truth
subjective score; λi = ⋯i{ 1, ,5} are the parameters to be fitted.

Since the proposed method is based on QWT, it is necessary to de-
cide the optimal decomposition scale of QWT. Hence, we conducted
experiments on blur subset of CSIQ database [39] to check how the
method performs with the change of QWT with different decomposition
scales. We test QWT with the decomposition scale from 1 to 7 and Fig. 8
shows that the SRCC values increase with the decomposition scale from
1 to 3. Then with the decomposition scale increased, SRCC values de-
crease inversely. Based on this information, the proposed method em-
ploys QWT with 3 scales, which is applied in the subsequent experi-
ments.

4.2. Comparison with authentically distorted and general purpose blind IQA
models

Limited works have been dedicated to assess the quality of

Fig. 7. Histogram of the ψ phase for the natural undistorted image,
child_swimming, and its different distorted versions. ORG stands for the
undistorted image. AWGN denotes additive white Gaussian noise.
BLUR stands for Gaussian blur. J2PK denotes JPEG2000 compression.
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naturally-distorted image so far. Saad et al. proposed an objective
consumer device photo quality evaluation metric, which utilized NSS
modeling and the consumer-centric, quality aware interpretable fea-
tures for image quality prediction [20]. Zhu et al. conducted a study on
common, camera-specific kinds of distortions and proposed a blind IQA
metric for photographic images produced by consumer devices [19].

In this section, the proposed CIQM model is compared with the
above two metrics [19,20], which are designed for authentically dis-
torted image quality assessment, as well as eight state-of-the-art general
purpose blind IQA metrics, including BIQI [12], NIQE [13], BLIINDS-II
[14], BRISQUE [15], DIIVINE [16], NFERM [17], SSEQ [18] and IL-
NIQE [11]. Since CIQM adopts RF regression model for quality pre-
diction, each database is randomly split into two parts: 80% images for
model training, 20% for testing. To avoid bias, this process is conducted
1000 times and the median values are reported. All the source codes of
compared blind IQA metrics were obtained from the authors or web
sites. Since most of the compared metrics are based on SVR and they use
LIVE database [38] to train the model, for fairness, the compared me-
trics are all retrained on CID, RBID and LIVEW databases before testing.
Table 1 lists the experimental results on the three databases that con-
tain realistic distortion images, and the top two performance values are
marked in boldface. From Table 1, it can be observed that the proposed
CIQM method achieves the best prediction monotonicity and accuracy
on CID and RBID database. On LIVEW database, the proposed model is
slightly worse than the BRISQUE metric. From the results, we can draw
the conclusion that the proposed CIQM is effective for authentically
distorted images.

4.3. Extension to evaluate multiple distortions

As a method specifically designed for authentically distorted

images, the proposed model is expected to perform well on multiply
distorted images. To this end, the proposed CIQM model is further
tested on multiply distorted images. Recently, several multiply dis-
torted image databases have been created, such as Waterloo exploration
database [43], multiply distorted image database (MDID) [45] and LI-
VEMD database [44]. The Waterloo exploration database [43] contains
4744 pristine natural images and 94880 distorted images created from
them. And the Waterloo exploration database uses three innovative
evaluation criteria, the pristine/distorted image discriminability test
(D-test), the listwise ranking consistency test (L-test) and the pairwise
preference consistency test (P-test) to evaluate the relative performance
of IQA models instead of collecting the mean opinion score for each
image via subjective testing. It is impossible to compare the proposed
metric with the other image quality assessment algorithms using PLCC,
SRCC and RMSE on Waterloo exploration database. Therefore, in this
part, the proposed metric is only tested on MDID [45] and LIVEMD [44]
multiply distorted databases.

The LIVEMD database contains 15 pristine images and 450 multiply
distorted images of two types, including blur followed by JPEG and blur
followed by noise. Hence, the distortions in LIVEMD database are si-
mulated. But the distortions in the other three camera image quality
databases are authentic, which are generally more complex, diverse and
multipartite, and thus the visual quality assessment requires more ef-
forts in the community. The difference mean opinion scores of the
images in LIVEMD database are ranging from 0 to 100.

The MDID database contains 20 reference images and 1600 dis-
torted images. The distorted images are obtained by contaminations of
the reference images with multiple distortions of random types and
levels, so multiple types of distortions are present in each distorted
image. Table 2 summarizes the experimental results on the LIVEMD and
MDID databases, where the best performance values are marked in
boldface. It is known from Table 2 that the proposed CIQM model
significantly outperforms the general purpose IQA metrics. From Tables
1 and 2, we can draw the conclusion that the proposed CIQM is effec-
tive for both authentically distorted images and multiply distorted
images.

4.4. Effects of training image numbers and machine learning tools

To test the impacts of training image numbers and regression
methods on the performance of the proposed metric, experiments are
conducted using different numbers of images and different training
methods. In this part, we use 80%, 60%, 50% and 40% four different
percentage of training images, and SVR, RF two different regression
models for training model. The experimental results are listed in
Table 3. It is observed from Table 3 that when using different regression
methods, the performances are similar. However, with the decreasing
number of training images, RF has better stability than SVR. For CID
database, the SRCC values of SVR change from 0.8007 to 0.7369, but

Fig. 8. The computed curves of SRCC with different decomposition scales of QWT.

Table 1
The SRCC, PLCC and RMSE results of the proposed CIQM model and the compared metrics on authentically distorted image databases. The top two metrics are highlighted in boldface.

Database CID [41] RBID [40] LIVEW [42]

IQA Metric Type PLCC SRCC RMSE PLCC SRCC RMSE PLCC SRCC RMSE

Zhu [19] Realistic 0.8025 0.7795 13.4658 0.4266 0.4013 1.1323 0.4162 0.3512 18.4553
Saad [20] Realistic 0.6353 0.6146 17.4836 0.3733 0.4013 1.1614 0.2633 0.2642 19.6090
BIQI [12] Simulated 0.7741 0.7460 13.8275 0.5983 0.5732 0.9951 0.5324 0.5077 17.1349
NIQE [13] Simulated 0.6640 0.6517 16.8732 0.4601 0.4566 1.1116 0.4966 0.4510 17.6171

BLIINDS-II [14] Simulated 0.7152 0.7010 15.2091 0.5477 0.5285 1.0434 0.4973 0.4619 17.5425
BRISQUE [15] Simulated 0.7512 0.7502 14.1831 0.6083 0.5834 0.9927 0.6346 0.6107 15.6238
DIIVINE [16] Simulated 0.6089 0.5783 17.2475 0.4787 0.4369 1.0913 0.3511 0.2267 18.9278
NFERM [17] Simulated 0.7677 0.7572 14.0283 0.5642 0.5455 1.0255 0.5877 0.5489 16.325
SSEQ [18] Simulated 0.7036 0.6903 15.3965 0.5999 0.5754 0.9946 0.5390 0.4962 17.0352

IL-NIQE [11] Simulated 0.4199 0.3023 20.4806 0.5032 0.4861 1.0819 0.5040 0.4392 17.5149
CIQM (Pro.) Realistic 0.817 0.8049 12.8871 0.6373 0.6304 0.9579 0.6186 0.5831 15.907
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the values of RF only change from 0.8049 to 0.7620. Hence, in our
proposed method, we adopt RF to train the regression model. Even only
40% images are used to train the model, the performance of the pro-
posed method is still very good. For example, the SRCC values of CID
database can reach 0.7620 and 0.7369, and the SRCC values of RBID
database can reach 0.5701 and 0.5439. These results are even better
than most of existing general purpose bind IQA metrics.

4.5. Contribution of each component

The proposed CIQM method consists of three kinds of features, in-
cluding magnitude, entropy, and the phase statistics. It is important to
test the contribution of each kind of features. To this end, we conduct
experiments on these three kinds of features, respectively. The training
and testing processes are similar as before. The values of PLCC, SRCC
and RMSE are listed in Table 4, which indicates how well each kind of
features correlate with the subjective scores.

It is easy to draw important conclusions from Table 4. Each kind of
features utilized in CIQM performs well. Moreover, it should be noted
that three kinds of features used in CIQM method considering different
aspects. The first kind of features is utilized to describe the generalized
spectral behavior. The second kind is used to encode the generalized
information of the distortion. And third kind is considered to be texture
feature, and natural scene statistics of the third phase of QWT is a
measure of structure degradation. Hence, better performance can be
acquired by integrating all three kinds of features.

4.6. Computational complexity analysis

In practical application, computational complexity is an important
factor for many real image processing systems. Hence, we compare the
computational complexity of our proposed methods with the state-of-
the-art general purpose blind IQA models. Experiments are conducted
using a desktop with Intel(R) Pentium(R) CPU G3250 3.20 GHZ and
10 GB RAM. Table 5 summarizes the feature numbers used by the
compared methods, and the average time consumed by each IQA metric
and the proposed CIQM model for extracting the features when applied
to 100 realistic distortion camera images from the LIVEW database
[42]. It is known from Table 5 that the proposed model CIQM uses
relatively few features and it performs the best with very low compu-
tational complexity.

5. Conclusions

In this paper, we have presented a novel blind camera image quality
metric via modeling quaternion wavelet coefficients. The proposed
metric solves the problem of quality evaluation of authentically dis-
torted images from three aspects, namely magnitude, entropy and the
third phase of QWT. The magnitude is utilized to describe the gen-
eralized spectral behavior. The entropy and natural scene statistics of
third phase are used to encode the generalized information of distor-
tions. We have compared our CIQM with IQA models designed for
authentically distorted images, as well as the state-of-the-art general
purpose blind IQA metrics on CID, RBID and LIVEW databases. The

Table 2
The SRCC, PLCC and RMSE results of the proposed CIQM model on the multiply distorted
image databases LIVEMD [44] and MDID [45]. We highlight the top one metric in
boldface.

Database LIVEMD [44] MDID [45]

IQA Metric PLCC SROCC RMSE PLCC SRCC RMSE

BIQI [12] 0.8863 0.8808 8.4077 0.7088 0.7085 1.5429
NIQE [13] 0.8377 0.7725 10.3292 0.6712 0.6503 1.6333

BLIINDS-II [14] 0.8922 0.8717 8.4645 0.7608 0.7481 1.4339
BRISQUE [15] 0.9048 0.884 7.9915 0.7924 0.7756 1.3491
NFERM [17] 0.9242 0.8992 7.0985 0.8003 0.7958 1.3202
DIIVINE [16] 0.7901 0.822 11.5036 0.4986 0.4991 1.9048
SSEQ [18] 0.8541 0.817 9.7414 0.7689 0.7606 1.4131

IL-NIQE [11] 0.8365 0.8777 10.3624 0.7240 0.6884 1.5200
CIQM (Pro.) 0.9259 0.9063 7.0857 0.8825 0.8744 1.0321

Table 3
Performances of the CIQM algorithm when using different regression models and image numbers.

Train-Test Partition 80–20% 60–40% 50–50% 40–60%

Database Criterion SVR RF SVR RF SVR RF SVR RF

CID [41] PLCC 0.8141 0.8170 0.7831 0.7971 0.7671 0.7868 0.7424 0.7731
SRCC 0.8007 0.8049 0.7793 0.7868 0.7632 0.7760 0.7369 0.7620
RMSE 12.6411 12.8871 13.8791 13.6203 14.3296 13.9136 14.9979 14.3236

RBID [40] PLCC 0.6490 0.6373 0.6037 0.6143 0.5845 0.5979 0.5552 0.5810
SRCC 0.6364 0.6204 0.5939 0.5988 0.5742 0.5861 0.5439 0.5701
RMSE 0.9466 0.9579 0.9973 0.9863 1.0159 1.0013 1.0394 1.0173

LIVEW [42] PLCC 0.6200 0.6186 0.5955 0.6013 0.5884 0.5904 0.5734 0.5786
SRCC 0.6020 0.5831 0.5811 0.5687 0.5740 0.5596 0.5598 0.5492
RMSE 15.8661 15.907 16.2551 16.2145 16.395 16.3921 16.6360 16.5629

LIVEMD [44] PLCC 0.8952 0.9259 0.8717 0.9140 0.8648 0.9043 0.8450 0.8953
SRCC 0.8663 0.9063 0.8392 0.8970 0.8313 0.8886 0.8115 0.8795
RMSE 8.0523 7.0857 9.2535 7.6858 9.4779 8.0637 10.1027 8.4086

Table 4
Contribution of each component used in the CIQM algorithm.

Component Criterion CID [41] RBID [40] LIVEW [42] LIVEMD [44]

Magnitude SRCC 0.6009 0.5260 0.4601 0.8543
PLCC 0.6130 0.5390 0.4802 0.8894
RMSE 17.6571 1.0441 17.6936 8.5346

Entropy SRCC 0.7900 0.6059 0.5463 0.9024
PLCC 0.8036 0.6346 0.5840 0.9208
RMSE 13.3510 0.9615 16.4186 7.3230

Phase_NSS SRCC 0.7289 0.5497 0.3753 0.8180
PLCC 0.7401 0.5656 0.4072 0.8513
RMSE 15.0862 1.0244 18.3897 9.8443

All SRCC 0.8049 0.6204 0.5831 0.9063
PLCC 0.8170 0.6373 0.6186 0.9259
RMSE 12.8871 0.9579 15.9070 7.0857
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experiment results have confirmed that our proposed metric can
achieve superior performance on images containing realistic distor-
tions. Furthermore, it is also worthy to emphasize that our metric also
effective for evaluating the quality of multiply distorted images.
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