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ABSTRACT

This paper presents an efficient perceptual model inspired
efficient video contrast enhancement algorithm. We propose
a S-shaped transfer function for image pixel values that ef-
fectively improves the perceived contrast while preserving
brightness of the scene. The S-shaped transfer function has
only one control parameter that can be adaptively chosen
for different video contents, such as sports, cartoon, news,
and landscape programs. Then, the input image brightness
is further preserved, in order to maintain the perception of
human visual system (HVS) to some special scenes, such as
dark scene and seaside scene. Experiments and compara-
tive study on VQEG Phase I test database demonstrate that
the proposed S-shaped Transfer function based Brightness
Preserving (STBP) contrast enhancement algorithm outper-
forms various histogram equalization based methods such
as HE, DSIHE, RSIHE and WTHE, yet with much lower
computational complexity.

Index Terms— Video contrast enhancement, S-shaped
transfer curves, human visual system (HVS), video scenes,
brightness preservation

1. INTRODUCTION

Contrast enhancement is an important research topic for im-
age processing and computer vision. By smartly redistribut-
ing pixel values in an image, the image contrast can be dras-
tically improved, as practiced by the traditional histogram e-
qualization (HE) [1]. The fundamental objective of HE is to
achieve the maximum entropy of the processed image so as to
preserve image details. In brief, HE is conducted by adjusting
pixel values according to the probability distribution of the
input image pixel. Nowadays, the classical HE method has
been widely employed in many image/video post-processing
systems, because of its simplicity and effectiveness. Howev-
er, since HE does not preserve the mean brightness and can
therefore sometimes cause visible deterioration. More and
more researchers in image processing tend to agree that HE is
far from ideal as an image contrast enhancement algorithm.

Realizing this major drawback of HE, a large number of
improved approaches by direct modification of HE to pre-

serve the brightness have been proposed. Early methods BB-
HE [2] and DSIHE [3] by first decompose the input image
histogram into dualistic sub-histograms, and then indepen-
dently perform HE in each sub-histogram. The distinction is
that the decomposition step of BBHE relies on mean bright-
ness, while DSIHE using median brightness. To better pre-
serve the mean/median brightness during sub-histogram sep-
aration, RMSHE [4] and RSIHE [5] adopt recursive oper-
ation to improve BBHE and DSIHE methods, respectively.
In addition, some contrast enhancement techniques of high-
er computational load were recently developed based on the
manipulation of dynamic range [6, 7, 8, 9].

Despite of the abundance of image contrast enhancement
techniques, only very few studies have been devoted to video
contrast enhancement during the last decade. Existing meth-
ods for video contrast enhancement can be divided into two
categories. The first type of algorithms are the direct exten-
sion of image based methods. For instance, DSIHE, RSIHE
and other brightness preserving algorithms can be applied to
each frame. The WTHE algorithm [10] modifies image his-
togram by weighting and thresholding followed by HE. In the
second type, [11] proposed a new and robust video contrast
enhancement approach, by analyzing video streams and clus-
ter frames that are similar to each other. More specifically,
they extract key frames belonging to each cluster using eigen
analysis and estimate enhancement parameters for only the
key frame, and then use these parameters to enhance frames
belonging to that cluster.

It is easy to imagine that video contrast enhancement de-
mands lower computational complexity and higher temporal
consistency. Those requirements rule out complicated method
such as [6, 7, 8, 9, 11] as well as HE-based algorithms such as
[1, 2, 3, 4, 5, 10] that may cause temporal luminance fluctua-
tion due to the possible combination of neighboring histogram
bins or the lack of brightness preservation. Our recent study
indicates that a simple S-shaped transfer function is quite ef-
fective in perceptual contrast enhancement. The transfer func-
tion is controlled by only one free parameter that is tunable to
different visual contents to customize and further improve the
performance. Moreover, the S-shaped transfer function pre-
serves the median brightness so it can be safely used in video
sequence without spoiling the perception of human visual sys-



tem (HVS) to special scenes.
The rest of this paper is organized as follows. Section

2 proposes the S-shaped Transfer function based Brightness
Preserving (STBP) video contrast enhancement algorithm.
In Section 3, experimental results using VQEG Phase I test
database [12] are reported and analyzed. Finally, Section 4
concludes this paper.

2. THE PROPOSED ALGORITHM FOR VIDEO
CONTRAST ENHANCEMENT

2.1. The S-shaped transfer curve

In our previous work [13] about subjective quality test of
contrast-changed images, it was noticed that S-shaped trans-
fer curve can significantly alter the perceptual contrast and a
visual scene. In other words, the transfer curve are capable of
improving the contrast of images to better match the prefer-
ence of the HVS. For an input image I , the S-shaped transfer
function used in this paper is defined as follows:

I ′ = S(I,πππ) = π1 − π2
1 + exp(− (I−π3)

π4
)
+ π2. (1)

Instead of tuning πππ = {π1, π2, π3, π4}, we want to reduce
the free parameters of the transfer function first. To solve all
the four parameters, we will have to assume that the trans-
fer curve passes several points (βi, αi), 1 ≤ i ≤ 4. We re-
quire the curve to be symmetric with respect to the central
brightness, namely the points (β1, α1) = (0, 0), (β2, α2) =
(127.5, 127.5), (β3, α3) = (255, 255). We will set β4 = 25
and let α4 to be the only free parameter.

Then, we can calculate the optimal controlling parameters
πππ = {π1, π2, π3, π4} by minimizing the following objective
function

πππopt = argmin
πππ

4∑
i=1

|αi − S(βi,πππ)|. (2)

With the computed model πππopt, image I can be enhanced as

I ′ = max{min[S(I,πππopt), 255], 0} (3)

where max and min operations limit the final pixel value
I ′ in the bound of 0∼255. And α4 (denoted as γ later for
simplicity) is the only controlling parameter to alter curvature
of the transfer function.

2.2. The selection of model parameter

Since our S-shaped transfer curve has just one parameter γ.
So the next step will be finding proper γ for different video
contents. For video contrast enhancement, a same set of algo-
rithm parameters should be applied to a cluster of frames in
order to avoid temporal artifacts [11]. Therefore, we will use
the same γ for a certain type of video contents.

Fig. 1. The illustration of primary flowchart of STBP.

In our research, it was noticed that a small change of γ
is enough for achieving dissimilar level of enhancement. So
in this paper, we set γ as 9 or 12 for different types of con-
tents. The larger the parameter γ, the less the level of contrast
enhancement.

Parameter tuning of the algorithm operates in two modes:
the universal mode and the manual mode. In the universal
mode, the value of γ is constantly set as 12 without consider-
ing the type of video contents. The manual mode is to alter
γ according to different types of video contents. We assume
that sports- and cartoon-type of video programs have relative-
ly higher original contrast and needs lower level of enhance-
ment, i.e. larger γ. Meanwhile news- and landscape-type of
programs can be enhanced more to to meet the audiences’ ex-
pectation, i.e. smaller γ. The selection of γ used in this paper
is as follows:

γ =

{
9 if news- and landscape-type programs

12 if sports- and cartoon-type programs
. (4)

Note that a wide set of parameter γ can be taken into consid-
eration for more complicated classification of video program
types.

2.3. The preservation of brightness

For the application of contrast enhancement techniques to TV
programs in consumer electronics, some earlier works point-
ed out the significance of brightness preservation [2, 3, 4, 5].
However, as shown in Fig. 2-3, these enhancement approach-
es hardly produce satisfactory results because of the visually
disturbing artifacts. As a matter of fact, the brightness preser-
vation is more important for videos than for images, since
the brightness deviation usually generates flickering artifacts,
which are commonly seen in enhanced video sequences using
traditional HE based methods.

So, in this work, median brightness subtraction and ad-
dition is adopted due to its simpleness and acquirement of
maximum entropy [3].



2.4. The proposed STBP algorithm

Using the HVS based S-shaped transfer curve with one pa-
rameter and median brightness preservation, our STBP algo-
rithm is defined as follows. For an input frame Fi, its median
brightness is first computed by

m = median(Fi). (5)

After that, Fi is modified based on the removal of the median
brightness m:

F ′i = Fi − (m− 127.5). (6)

We then perform Eq. (3) to improve the contrast of F ′i :

F ′o = max{min[S(F ′i ,πππopt), 255], 0}. (7)

where πππopt is estimated by letting the selected parameter γ
into Eq. (2). At present, a higher-contrast image F ′o is ob-
tained. The final result is produced by compensating the me-
dian brightness to F ′o so as to restore the brightness to its de-
fault value:

Fo = F ′o + (m− 127.5). (8)

As illustrated in Fig. 1, the primary steps of the proposed
STBP algorithm are presented.

3. EXPERIMENTAL RESULTS AND ANALYSIS

3.1. Experimental results

In this paper, we use VQEG Phase I test database [12] as a
testing bed. This database totally involves 19 video streams
with different contents. Three representative video sequences
are selected, namely “Susie”, “Moving graphic”, and “F1
Car”. Here, we assume that the first belongs to news- and
landscape-type programs, and the other two correspond to
sports- and cartoon-type.

Table 1. Median brightness of original frame(s) and various en-
hanced frame(s) of HE, DSIHE, RSIHE (r = 2), RSIHE (r = 3),
WTHE (r = 0.5, v = 0.5), WTHE (r = 1.0, v = 0.5), STBP
(γ = 12), STBP (γ = 9) methods. The results of Fig. 4 is com-
puted by directly averaging the median brightness values among six
successive frames.

Algorithms Fig. 2 Fig. 3 Fig. 4
Original image 108 60 103
HE 109 77 109
DSIHE 107 57 94
RSIHE (r = 2) 109 68 99
RSIHE (r = 3) 108 62 103
WTHE (r = 0.5, v = 0.5) 119 168 176
WTHE (r = 1.0, v = 0.5) 84 49 99
STBP (γ = 12) 108 60 103
STBP (γ = 9) 108 60 103

Fig. 2-4 display various results of some mainstream con-
trast enhance methods. First, nine results of diverse algo-
rithms are presented in Fig. 2. Clearly, Fig. 2 (f), (i) offer
more real sensation of Susie’s face, hair and etc, suggesting
that the proposed STBP algorithm has generated better prod-
ucts than other popular contrast enhancement methods. Sim-
ilarly, Fig. 3 also provides the same conclusion.

Next, we test the impact of γ on the results of our pro-
posed algorithm. It is interesting to not that γ = 9 and γ = 12
have produced more desirable frame in Fig. 2 (i) and Fig. 3
(f) respectively. These results validate our proposed manual
selection scheme of γ.

Further, we also compare four groups of successive en-
hanced frames extracted from the “F1 Car” video stream. It
can be simply found in Fig. 4 (b)-(c) that the enhanced frames
of RSIHE and WTHE suffer from flickering artifacts. In con-
trast, Fig. 4 (d) illustrates higher level of inter-frame consis-
tency, indicating that our proposed algorithm has better pro-
cessing results.

3.2. Performance analysis

The effectiveness of enhancing image/video using the S-
shaped curves is not a purely experimental finding, but is
supported by a recent finding in neurology [14]. It was
suggested that the HVS uses the on-center and off-center
cells and an accelerating nonlinearity to compute the subband
skewness as an estimate of the perceptual surface quality. In
practice, using S-shaped transfer curves, the proposed algo-
rithm generates a longer positive tail, and according to [14],
this induces higher level of perceived contrast. The median
brightness of our method is exactly preserved by the “Median
brightness removal” and “Median brightness compensation”
steps, as illustrated by the median brightness values of origi-
nal frame(s) and various enhanced frame(s) in Table 1.

Eventually, we have two remarks on the computational
complexity. First, the optimization problem in Eq. (2) with
two choices of the parameter γ and the associated S-shaped
mappings can be solved off line and stored in a lookup table.
So there are only four simple steps needed: median brightness
estimation and removal, pixel value transfer using suitable S-
shaped curve and brightness compensation. Second, the pro-
posed algorithm works in a frame by frame manner for video
contrast enhancement and therefore has very low requirement
for memory and storage. The proposed algorithm is therefore
very suitable for real-time video post-processing systems.

4. CONCLUSION AND FUTURE WORK

This paper proposed a fast and effective video contrast en-
hancement method (STBP) based on S-shaped transfer curves
and median brightness preservation. There are two major con-
tributions of our algorithm. First, the proposed algorithm is
effective and efficient, suitable for real-time video contrast



(a) Original image (b)Output of HE (c) Output of DSIHE

(d) Output of RSIHE (r = 2) (e) Output of WTHE (r = 0.5, v = 0.5) (f) Output of STBP (γ = 12)

(g) Output of RSIHE (r = 3) (h) Output of WTHE (r = 1.0, v = 0.5) (i) Output of STBP (γ = 9)

Fig. 2. The example of “Susie” and its various enhanced frames.

enhancement. Second, the S-shaped transfer function is sup-
ported by neurological study of human eyes. Experimental
results on video sequences from VQEG Phase I test database
demonstrate the superiority and simplicity of the proposed
STBP algorithm as compare to HE, DSIHE, RSIHE, and
WTHE methods.
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Fig. 4. The example of “F1 Car” and its various enhanced frames.


