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Abstract—Blur plays an key part in evaluating of camera
image quality. It leads to decrease of high frequency information
and accordingly changes the image energy. Recent researches in
quaternion singular value decomposition show that the quater-
nion’s singular values and associated vectors can capture the
distortion of color images, and thus singular values can be utilized
to assess the sharpness of camera image. Based on this, a novel
blind quality assessment method considering the integral color
information and singular values of the blurred camera image
is proposed for evaluating the sharpness of camera image.Pure
quaternion is utilized to represent pixels of the blurred camera
image and the energy of every block are obtained. Results confirm
the superiority of the proposed blind algorithm in assessing
camera images.'

I. INTRODUCTION

With the wide use of multimedia technology and Internet
business, visual information has played key role in human
daily lives. But images are oftentimes degraded by differ-
ent kinds and levels of distortions in compression [1], [2],
enhancement [3], [4] and more. So it is urgent to develop
effective and efficiency image quality evaluation algorithm to
evaluate camera image quality so that it can be utilized for
supervisory control and possibly enhancing camera quality.

Scientists have proposed many image assessment metrics
so far, which can be basically classified into objective and
subjective and quality evaluation methods [5], [6], [7], [8],
[9]. According to the image distortion prior knowledge, NR
IQA algorithms are also separated into general-purpose and
distortion-specific metrics. The latter class includes several
typical methods towards blurriness/sharpness [10], [11], [12],
[13], blockiness [14], [15], contrast adjustment [16], multiply
distortions [17], etc.

Although current image blur metrics are good at simulated
blur distortion, they poorly perform for realistic camera image
assessment, which can be found from experimental results
in Section 4. Realistic camera images contain complicated
blur types and suffer from different distortion sources. Sample
realistic camera images chosen from the RBID database [20]
are presented in Fig. 1. It was observed that the realistic
camera blur distorted images contain many categories of blur
distortions. Image (a) may be classified into the simple motion
class that could by fairly considered linear caused by camera
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Fig. 1. Sample realistic blur images from RBID database [20]. (a)
Complex motion blur. (b) Uncomplicated motion blur. (c) Out of
focus. (d) Other complicated distortions.

movements. Image (b) consists of complex motion blur which
caused by complex motion paths. Image (c¢) belongs to out
of focus category which caused by the whole image is out
of focus. Image (d) contains complex blur distortion which
may contains any other types of degradation. Hence, it is
challenging to assess realistic blur images quality .

This paper concentrates on blind camera image sharpness
assessment. As far as we know, our research is the pioneer
study to propose a blind sharpness of camera images on
the basis of quaternion singular values decomposition which
concerns the inevitable effect of color information on the
sharpness assessment. The layout of this paper is arranged
below. The theories of some relevant models employed in this
paper is presented in the second section. The description of
our designed model is illustrated in the third section. The
superiority of the BQSVD model with lately devised blind
sharpness techniques are verified on the RBID database [20]
in the fourth section. We derive some conclusions in the fifth
section.
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Fig. 2.
=100. (e) i = 30. (f) i = 10.
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Influence of changing singular values o. The original image is shown in (a). The number of o; set as (b) i = 512. (¢) i = 200. (d) i

(@ (e) ®

Fig. 3. Influence of changing UVT values. (a) denotes pristine image. The number of group U, VT setas (b)i=512.(c)i=300.(d)i=

100. (e) i = 50. (f) i = 10.

II. BACKGROUND

Singular value decomposition (SVD) is one of the most
famous transformation in linear algebra. Formally, the math-
ematical definition of SVD for an image matrix W, »,, can
be defined as

men = UmeSanmen (1)

where S is a rectangular diagonal matrix. V and U are unitary
matrix. o; corresponds to diagonal entries, which are also the
W’s singular values. We listed them in a decreasing rank. The
V’s and U’s columns are orthogonal bases. The matrix Uv’
can represent the image structure (the basis image) [21]. To
visually view the effect of singular value and singular vector
on the image, we show examples in Fig. 2 and Fig. 3.

Singular values or singular vectors can describe features
of images, which may be used for quality assessment. In
1843, the concept of quaternion [22] is proposed by Hamilton.
Generally speaking, a quaternion encompasses four parts, three
imaginary numbers and one real number. We can understand
quaternion to be an expansion of complex, namely hyper
complex numbers.

The case with a null real part (the first real number a = 0)
refers to a pure quaternion, which can be employed to charac-
terize color image. To specify, we can express a color image
based on the pure quaternion:

Qi = Fri+ Fgj + Fgk )

where R, G and B correspond to an color image’s red, green
and blue channels.

SVD is a factorization of a matrix. Hence, it can be directly
applied to gray images. For a color image, one way is to
directly operate SVD on one channel of the color image, and
another way is through transforming the color image to extract

() (d)

Fig. 4. The top two images (a)-(b) are the pristine childswimming
image and its associated blurred one. The bottom two images (c)-(d)
are the distortion maps of the gray scale SVD and QSVD of the blur
distorted images, respectively.

the brightness level information before using the SVD method
to deal with. Both of the two ways cannot handle the color
image as a whole, neglecting the color information of the
camera image. However, the quaternion model can describe
the color image information as a whole, according to the
definition of SVD on the complex adjoint matrix, singular
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value decomposition of quaternion (QSVD) is utilized to
evaluate color images quality. We define the QSVD according
to [23], [24]:

0 «
FQomn) = UmxmSmxn ( ZOT 0 ) Vioxn 3)

> =diag(oy, 09, ,0) )
"

where " is real diagonal matrix. These non-negative real
numbers are the quaternion matrix (Q(m,n)’s singular values
and r is the rank of Q(m,n). V and U are the right and left
Q(m,n)’s singular vectors and elements of these two unitary
matrixes are all quaternions. * denotes the conjugate transpose.
To intuitional understanding the gray scale SVD that only
concentrated on luminance information, and QSVD combined
luminance and chrominance information into the IQA model,
we give an example in Fig. 4. The subsequent formula is used

to construct the distortion map [25].

P

Z(Sdis(i) - Sorg(i))2 5)

i=1

D(i) =

where S,,, and Sg;, denotes the singular values which are
obtained by gray scale SVD and QSVD method of the
corrupted block, P is the size of block. A gray scale image
can be obtained representing distortion map which consisted
by mapping D(:) values to the range [0, 255].

It is well known that the gray scale SVD method, which
only extracts the luminance components and discards many
effective components, can not intuitionally reflect the distor-
tion degree. However, QSVD performs better, which implies
that the chrominance information should be considered when
assess color image quality.

III. PROPOSED BLIND QUALITY METRIC

So far, many visual quality models have been addressed for
objective image quality assessment. They are good in simulat-
ed distortions, but poorly perform for realistic camera image
assessment. In this research we deploy QSVD to measure
the sharpness of camera images. The theoretical foundation
is that Frobenius norm of hyper complex matric can be used
to represent the energy of color camera images, and we have
a reason to believe energy change can be effectively reflect
the extent of blur.

In our work, a novel hyper complex SVD-based blind
camera image assessment metric is proposed. The proposed
algorithm includes three main stages. First, the input blurred
visual signal is transferred into the color space of LAB, and
is represented by pure quaternion. Second, two components
are calculated: 1) quaternion singular values for blocks; 2)
energies of the blurred camera image blocks . Finally, SVR-
based learning is utilized to acquire the blur score of an input
camera image.

According to the previous researches, it was found that
the HVS has higher sensitivity to luminance variations than
chrominance [25]. Therefore, most previous IQA methods

(a) E = 46.4592

(b) E = 46.8640 (c) E =53.3717

Fig. 5. Three realistic camera images and their average energies.

were devised based on the mathematical modeling. Our metric
considers the inevitable influence of color information on the
sharpness assessment. So, in the proposed metric, the blurred
camera image is first converted into widely used LAB color
space [26].

Considering the fact that the LAB color space is a well
approximation of human vision, unlike the CMYK and RGB
color space, it includes all the colors information to the human
eye. After the transformation, the pure quaternion is used to
express every pixels of the transformed blurred camera image:

FQ:FLi+FAj+FBk (6)

where L denotes the luminance information; A and B for the
color dimensions. Frobenius norm can be utilized to represent
the energy E of a matrix A:

E =[[Alp. O

Therefore, Frobenius norm of hyper complex matric A can be
used to represent the energy of color camera images (E). Ac-
cording to the definition of the hyper complex singular value
decomposition, for any hyper complex matrix A € HM*N,
there exist two unitary hyper complex matrix V and U, which
satisfy the subsequent relationship:

Jv

_yf = O
A_U( 0 0

where U € HM*M vy ¢ HNXN_ Superscript * denotes
conjugate transpose, » . is a matrix that contains the number
of r non-empty values. According to Eq. (7) and Eq. (8), the
energy of color camera image can be defined as the Frobenius
norm of hyper complex matrix singular values. In other words,
the singular values of hyper complex matrix denotes the energy
feature of the color image, and it can be utilized as benchmark
for assessing the quality of color image. It serves as the
theoretical basis for our proposed blind camera sharpness
assessment metric.

Blur changes the image information existed in high fre-
quency, and the quaternion singular values accordingly vary.
To give a straightforward view of the relation of quaternion
singular values and blur, an example is shown in Fig. 5, in
which three realistic camera images with different blur scales
and their energy are shown. It is can be viewed from the figure
that the energy change with the degree of blur. Therefore, the
energy can be utilized to test the sharpness degree of camera
images with the same content.

®
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TABLE I

PERFORMANCE COMPARISON ON THE RBID DATABASE.
Metric PLCC SRCC KRCC RMSE
CPBD [10] 0.2704 0.2711 0.1820 1.2053
S3 [11] 0.4270 0.4253 0.2921 1.1320
ARISM [12] 0.1841 0.1841 0.1258 1.2305
BIBLE [13] 0.3816 0.3846 0.2611 1.1572
NIQE [18] 0.4608 0.4584 0.3089 1.1111
NFERM [19] 0.4738 0.4679 0.3183 1.1025
BQSVD (Proposed) | 0.4849 0.4752 0.3230 1.0949

According to Gu et al. [27], image size and observing
distance have great effect on the perceived image quality.
Motivated by this, we adopt down-sampling way to acquire the
energy of four scale images as features. And the t% highest
variance blocks are used as features to train the SVR model
[28]. Afterwards, the well-established regression module is
applied for inferring an image’s sharpness score.

We summary the proposed BQSVD algorithm below. The
input blurred RGB camera image I(z,y, z) is first converted
to LAB color space. Next, we separate the image into blocks
of equal-size non-overlap P x P. The block size adopted in the
proposed method is 8 x 8, since the standard block size used
in many image processing applications are all 8 x 8 based.
In [11], the sharpness score was obtained by taking the 1%
highest values in the obtained map. In our proposed method,
the blocks are ordered by their variances, and the t% highest
energy blocks are deployed to derive the quality estimation.

IV. VALIDATIONS

The performance of our quality model is verified using the
realistic blur database (RBID) camera image quality database
[20]. The images in this database are obtained for various
scenes, camera apertures. The database includes 586 images
with resolutions ranging from 640x480 to 2816x2112 pixels
which contains not only simple cases, but also complicated
and realistic ones. Mean opinion score is used to measured the
subjective image quality scores in the RBID database, which
with values from O to 5.

According to the VQEG’s suggestions [29], four criteria
indexes are introduced for testing the performance, including
KRCC, SRCC, RMSE, and PLCC. The first two indexes are
towards measuring the monotonicity in predictions, whereas
the other two are towards evaluating the accuracy in pre-
dictions. The performance of our developed IQA model is
computed on the RBID database and compared with recently
proposed blind sharpness/quality methods, including CPBD
[10], S3 [11], ARISM [12], BIBLE [13], NIQE [18], as well
as NFERM [19]. We tabulate experimental results in Table II,
in which we mark the highest results in boldfont. We notice
that our designed metric produces the optimal results, which
achieves the largest KRCC, SRCC and PLCC, as well as the
lowest RMSE compared with prevailing competitors.

V. CONCLUSION

We in this paper have came up with a referenceless qual-
ity model for realistic camera image sharpness based upon
quaternion singular value decomposition. A comparison of our
Q-SVD with popular blind sharpness measures is conducted
using the RBID database. Results of trails demonstrate the
superiority of our designed blind IQA metric on the RBID
database. Apart form the superior performance, to our knowl-
edge, our BQSVD technique is the first one using hypercom-
plex singular value decomposition towards blind IQA problem.
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