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a b s t r a c t 

Contrast Sensitivity (CS), Luminance Adaptation (LA) and Contrast Masking (CM) are important contribut- 

ing factors for Just Noticeable Difference (JND) in images. Most of the existing pixel domain JND algo- 

rithms are based only on LA and CM. Research shows that the human vision depends significantly on 

CS, and an underlying assumption in the existing algorithms is that CS cannot be estimated in the pixel 

domain JND algorithms. However, in the case of natural images, this assumption is not true. Studies on 

human vision suggest that CS can be estimated using the Root Mean Square (RMS) contrast in the pixel 

domain. With this in perspective, we propose the first pixel-based JND algorithm that includes a very 

important component of the human vision, namely CS by measuring RMS contrast. This RMS contrast is 

combined with LA and CM to form a comprehensive pixel-domain model to efficiently estimate JND in 

the low frequency regions. For high frequency regions (edge and texture), a feedback mechanism is pro- 

posed to efficiently alleviate the over- and under-estimation of CM. To facilitate this, a prediction based 

algorithm is used to classify an image into low (smooth) and high frequency regions. This feed-back 

mechanism is based on the relationship between the CS and RMS contrast. Experiments validate that 

the proposed JND algorithm efficiently matches with human perception and produces significantly better 

results when compared to existing pixel domain JND algorithms. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Just Noticeable Difference (JND) is a visibility threshold below

which change in an image cannot be sensed by the human visual

system. In the human vision (HV), perceived information highly

depends upon signal characteristics such as spatial frequency and

contrast of signal [1–5] . In general, a change in a signal which is

imperceptible to 75% of viewers can be defined as the JND value

for the corresponding signal. 

JND profiles are used in several multimedia applications. In-

formation which cannot be sensed by the eyes can be removed

with the guidance of JND and does not require to be coded in a

bit-stream or this removed information help to enhance the accu-

racy of the image quality assessment matrices. Therefore, JND pro-
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les are extensively used for multimedia coding [6,8,14,18,20] . The

uthors of [16,17,25,26] estimated video and image quality, respec-

ively, using JND profiles. The JND profiles are also used for wa-

ermarking [15,19] . In the same line, researchers have also used

ND profiles to guide visual signal enhancement [13,21] . Recently,

ND profiles received a lot of attention and these profiles are used

n different multimedia applications, such as, Fang et al. [27] used

mportant component of JND (namely contrast sensitivity) for the

aliency detection and authors of [28,29] used it for the depth

ensation enhancement. Interestingly, JND profiles also have the

bility to guide the seam carving [30] and enhancement of

acklight-scaled images [31] . Such widespread use of JND reveals

he significance of developing more accurate models to enhance

he accuracy of multimedia applications. 

Contrast sensitivity (CS), Luminance Adaptation (LA) and Con-

rast Masking (CM) are important contributing factors for JND in

mages. LA is the ability of human vision to adapt with the change

n luminance and estimation of the LA is based upon the psy-

hological experiments [20] , and CM, which refers to the visibility
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Table 1 

Comparison between existing pixel domain JND models [6–8,20] . 

Attribute Chou et al. [20] NAMM [8] Liu et al. [7] Wu et al. [6] 

Luminance Adaptation or Texture Masking Yes No No No 

Luminance Adaptation and Contrast Masking No Yes Yes Yes 

Image classification No No Yes No 

Contrast sensitivity No No No No 

CM based upon edge strength No Yes Yes No 

CM based upon prediction errors No No No Yes 

Under and/or over-estimation of CM Yes Yes Yes Yes 

r  

m  

t  

f  

a  

s  

J  

(  

m  

a  

m  

t  

p  

e  

m  

b  

i  

w  

1

 

p  

s  

a  

c  

h  

i  

t  

l  

t  

J  

m  

c  

c  

w  

m  

R  

f  

t  

o  

g  

p  

r  

a  

t  

i

 

h

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

h  

m  

C  

a  

t  

a  

a  

a  

p  

d  

p

 

fi  

c  

a  

J  

a

 

s  

e  

r  

s  

v  

g

2

b

 

m  

r  

u  

t  

w  

J  

t  

a  

e  

a  

C  

h  

c

eduction of one signal in the presence of other signals, is esti-

ated based upon the edge and texture strength [6–8,20] . CS, on

he other hand, gives an idea of our visual system’s ability to dif-

erentiate an object, from its background. In a broad sense, JND

lgorithms can be divided into two categories: pixel domain and

ub-band. As the HV highly depends upon CS, existing sub-band

ND algorithms estimate CS using the Contrast Sensitivity Function

CSF) in sub-bands [22] . However, existing pixel domain JND esti-

ation algorithms do not have such capability due to the lack of

n effective way to account for CS in pixel domain. For this reason,

any sub-band JND algorithms have been proposed in the litera-

ure, while only a few pixel domain JND algorithms have been pro-

osed. In many applications (such as image and video coding [6–8] ,

nhancement [13] and quality assessment [17] ), a direct pixel do-

ain JND estimator is preferred. The importance of CS can be seen

y the fact that model in [24] has to convert a pixel domain model

nto the sub-band, in order to consider CS. Therefore in this paper,

e concentrate on pixel domain JND estimation which includes CS.

.1. Related work 

As aforementioned, a few pixel domain JND models have been

reviously proposed in the literature [6–8,20] . In general, HV is

ensitive to the slowly varying regions, such as smooth regions

nd regions with weak edges, and small changes in these regions

an be easily identified by HV. While HV is less sensitive to the

igh frequency regions and changes made in these regions are be-

ng unnoticed by HV. With this view, in existing JND algorithms,

he main components for JND estimation are LA and CM [8] for

ow and high spatial frequency regions, respectively. The first at-

empt for pixel domain JND estimation was made in [20] , in which

ND threshold was estimated using either LA or contrast (texture)

asking. In the same line, Yang et al. [8] proposed a JND model

alled the Non-linear Additivity Model for Masking (NAMM), which

onsiders both components. Liu et al. [7] proposed an algorithm, in

hich an image is decomposed so that edge masking and texture

asking are calculated separately for the edge and texture regions.

ecently, Wu et al. [6] proposed a JND algorithm based upon the

ree-energy principle. In this model, prediction errors are used as

he CM for the JND estimation for textural regions, while for the

ther regions, JND is estimated using the existing NAMM [8] . In

eneral, these algorithms are not specifically designed for any ap-

lications. However, authors of these algorithms have applied cor-

esponding models to remove the perceptual redundancy of images

nd/or videos for the coding purpose [6–8] . The main attributes of

hese existing pixel domain JND models [6–8,20] are summarized

n Table 1 . 

From Table 1 , one can observe that existing JND algorithms

ave two major issues: 

(1) All the above described pixel domain JND algorithms

[6–8,20] only use LA and CM for JND estimation. As such,

these algorithms cannot include the effect of CS, which in

turn leads to visible artefacts in images, especially in the

smooth regions. 
(2) Furthermore, in high spatial frequency areas (edge and tex-

ture), CM estimation in the existing algorithms is only based

upon edge and texture strength [7,8,20] or prediction errors

[6] , which may lead to under- or over-estimation [22] of the

CM. The changes made in the signal guided by the over es-

timated CM can be easily sensed by human visual system

[1,2,22] . In these situations, inaccurate JND estimation can

severely affect the efficiency of the multimedia applications.

To overcome the above-mentioned problems associated with

he existing pixel domain JND algorithms, we propose a compre-

ensive and efficient pixel domain JND algorithm in which, we

erge the effect of CS (by measuring RMS contrast) with LA and

M for estimating JND. We also propose a novel feedback mech-

nism, which efficiently alleviates the over- and under- estima-

ion of the CM in high spatial frequency regions (such as edge

nd texture). The decomposition of an image into smooth, edge

nd texture regions is based on prediction errors of the input im-

ge. From experiments, it is validated that the proposed algorithm

roduces significantly better results as compared to existing pixel

omain JND algorithms and efficiently matches with the human

erception. 

In short, the main contribution of this paper is to propose the

rst pixel domain JND algorithm to include the most important

omponent of the HV, namely CS, which is combined with LA

nd CM for accurate JND estimation. This accurate estimation of

ND can help to enhance the efficiency of the several multimedia

pplications. 

The rest of the paper is organized as follows. Section 2 de-

cribes both the proposed decomposition of an image into smooth,

dge and texture regions using prediction errors, and the JND algo-

ithm. The comparison of the proposed algorithm with the existing

tate-of-the-art algorithms and results of subjective tests are pro-

ided in Section 3 , and the discussions and concluding remarks are

iven in Sections 4 and 5 , respectively. 

. Proposed contrast sensitivity and feedback mechanism 

ased JND algorithm 

In the proposed algorithm, we try to build a computational JND

odel which efficiently matches with human perception [1–5] . The

elationship between the CS and spatial frequency is represented

sing the parabolic curve (CSF) [1,2] . In general for natural images,

he HV is more sensitive towards the low spatial frequency regions

hen compared to high spatial frequency regions [1–8] . Therefore,

ND should be higher in the high frequency regions as compared

o low frequency regions [6–8] . Accordingly, we decompose an im-

ge into low and high frequency areas, based upon the prediction

rrors of the input image. For the low frequency areas, we propose

 new algorithm which takes into account the effect of LA, CM and

S (RMS contrast), while for high frequency regions we propose to

ave a feed-back mechanism based upon the RMS contrast, which

an efficiently control the CM. 



368 V. Jakhetiya et al. / Neurocomputing 275 (2018) 366–376 

Fig. 1. Image decomposition based upon the prediction errors for the ‘Monarch’ image: (a) original image, prediction residual errors of (b) bilinear interpolation, (c) obser- 

vation model based bilateral filter [9,10] , and classified (d) edge, (e) texture and (f) smooth regions of the ‘Monarch’ image. In these binary images (d), (e) and (f), white 

pixels represent, edge, texture and smooth pixels, respectively, in the ‘Monarch’ image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Image classification based upon the prediction errors of OBF ( e 1 ) and 

bilinear interpolation ( e 2 ). 

Condition OBF based ( e 1 ) Bilinear based ( e 2 ) Classification 

I e 1 ≥ Th 1 e 2 ≥ Th 2 Texture Pixel 

II e 1 < Th 1 e 2 ≥ Th 2 Edge Pixel 

III e 1 < Th 1 e 2 < Th 2 Smooth Pixel 

IV e 1 ≥ Th 1 e 2 < Th 2 Smooth Pixel 
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2.1. Image classification in smooth, edge and texture regions 

Edge-directed prediction algorithms (such as the perceptually

motivated [12] predictor and bilateral filter based interpolation

[10] and deinterlacing [9] algorithms) can efficiently predict reg-

ular edges and smooth pixels, but these algorithms cannot predict

texture information [6] . On the other hand, a simple bilinear in-

terpolation algorithm cannot predict both edges and texture pix-

els, but it can predict smooth pixels efficiently. With this view,

we decompose an image into smooth, edge and texture regions

[7] by combining two prediction algorithms. We use the Observa-

tion model based Bilateral Filter (OBF) [9] as the edge directed pre-

diction algorithm, as the OBF is computationally very simple and

also has very good edge preserving capability. The OBF predicts the

input image ( B ) as 

ˆ P 1 = 

λB + 

∑ 

k ∈ N w k A k 

λ + 

∑ 

k ∈ N w k 

(1)

where A k and w k are the pixels in the neighboring 3 × 3 window

N and corresponding weights, respectively, while, λ is the param-

eter which controls the prediction accuracy. A higher value of λ
increases the prediction accuracy and some of the texture pixels

will be efficiently predicted. In this situation, these texture pix-

els will be wrongly classified as edge pixels. On the other hand,

a lower value of λ results in poor prediction and some of the edge

pixels will be wrongly treated as texture pixels. Taking this into

account, in our experiments, we chose λ to be 0.3. These weights

( w k ) are calculated based upon the pixel gradient and radiometric

distance, as suggested by Hung et al. [10] . The bilinear predictor is

used for the second prediction ( ̂  P 2 ) using pixels in the neighboring

3 × 3 window with equal weights. The prediction errors for these

predictors are calculated as; 

e 1 = | B − ˆ P 1 |; e 2 = | B − ˆ P 2 | . (2)

As both of the predictors cannot adapt in the textural area and

subsequently, both prediction errors ( e 1 and e 2 ) for such kinds of

pixels have a high value (as shown in Fig. 1 (b) and (c)). How-

ever for pixels with edges, the OBF predictor can adapt accurately

but the bilinear interpolation based predictor fails. Hence, based
n these observations, we decompose the pixels of an image into

mooth, edge and texture pixels based on the prediction errors.

he classification strategy is as follows: 

(1) If both the predictors can predict a pixel and produce small

prediction errors, it suggests that this pixel is in a smooth

region, condition III in Table 2 . 

(2) If both the predictors cannot predict a pixel, it suggests

that this pixel belongs to the textural region, condition I, in

Table 2 . 

(3) If predictor 1 can predict it efficiently and predictor 2 can-

not, it suggests that this pixel belongs to the edge region,

condition II, in Table 2 . 

The classification results for the ‘Monarch’ image is shown in

ig. 1 . From experiments, we chose both thresholds Th 1 and Th 2 
for the corresponding predictors) to be 6. In the proposed algo-

ithm, the pixels which cannot be classified as either edge or tex-

ure (condition IV) are classified as smooth pixels (only a few pix-

ls fall into this category). The motivation of our prediction based

ecomposition algorithm is not to propose a competitive classifi-

ation algorithm but to classify pixels in such a way that none of

he smooth pixels are classified into edge or texture pixels. As CM

hould be quite high for high frequency regions as compared to

mooth regions. If a smooth pixel is wrongly classified, it will have

igh CM and changes made in signal guided by this CM can be

asily sensed by the HV [1–5] , thereby decreasing the efficiency of

he JND model. 

In the proposed algorithm, these two prediction errors play a

wo fold role: (1). decomposition of the input image into smooth,
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dge and texture regions and (2). estimating the CM [6] for the

dge and texture pixels (details are given in Section 2.3 ). 

.2. Low frequency regions 

The existing pixel domain JND algorithms only consider LA

nd CM for estimating the JND value. As such, these algorithms

6–8,20] cannot estimate the CS due to lack of efficient way of

stimating it in the pixel domain. So these algorithms assume that

S does not play an important role in the HV in the low frequency

reas. Contrary to this argument, research on the HV clearly sug-

ests that CS plays a very important role in achieving contrast in-

ariance (ability of the human visual system to adapt to the change

n contrast) [2] . Studies on the HV suggest that CS also can be es-

imated in the pixel domain using RMS contrast for natural images

1,4] , and even to that RMS contrast has a better ability of rep-

esenting the human vision for natural images [3] than the con-

rast sensitivity function. To address this issue, we combine the

MS contrast with LA and CM to efficiently estimate the JND value,

hich matches with human perception. The RMS contrast [1,3,4] is

efined as; 

 rms (i ) = 

σLum 

(i ) 

μLum 

(i ) 
(3) 

here σ Lum 

( i ) and μLum 

( i ) are the standard deviation and mean of

he i th pixel in the smooth area, respectively. In the proposed algo-

ithm, we use a 5 × 5 window to calculate the σ Lum 

( i ) and μLum 

( i ).

e propose the JND model for low frequency regions as; 

 N D smooth (i ) = α(i ) × NAM M (i ) (4)

here α( i ) and NAMM are the contribution of the RMS contrast

nd non-linear additivity model for masking [8] , respectively. This

ontribution α( i ) is estimated using the relationship between the

MS contrast and CS [1] , and this relationship was obtained from

he psychological experiments on the HV in [1] . The NAMM [8] is

efined as 

A (i ) = 

{ 

17 × (1 −
√ 

( B (i ) 
127 

) if B (i ) ≤ 127 

3 
128 

× (B (i ) − 127) + 3 else 
(5) 

M(i ) = [0 . 01 B (i ) + 11 . 5] [0 . 01 G (i ) − 1] − 12 (6)

AM M (i ) = LA (i ) + SM(i ) − 0 . 3 × min { LA (i ) , SM(i ) } (7)

In the NAMM [8] LA ( i ), SM ( i ), B ( i ) and G ( i ) are the Luminance

daptation, Spatial Masking, background luminance of the i th pixel

nd maximum height of edge in the 5 × 5 neighborhood, respec-

ively. More details about the NAMM can be found in [8] . 

From Eq. (3) , it can be observed that RMS contrast can have a

igher value because of either the low mean ( μ) value (in smooth

egions with low luminance) or high value of the standard devia-

ion ( σ ). In dark (low luminance) smooth regions, the RMS contrast

s quite high and the contrast control gain mechanism in the HV

annot adapt to changes in such regions [1,5] . Therefore, CS has a

igh value [1,5] and a slight change in these regions can be noticed

y the HV. Hence, the JND should decrease with the increment of

MS contrast (because of the low mean μ) in the smooth regions. 

On the other hand, if a signal has a high standard deviation

 σ ), the change in the signal can not be identified by the HV,

s the contrast gain mechanism in the HV can adapt to changes

n such regions [1,2,5] . So, once the standard deviation is higher

han the threshold, the CS becomes quite low and JND can have a

igher value. We empirically determined this threshold to ideally

e 10. By considering the above mentioned arguments, we model

he contribution of RMS contrast in JND estimation ( α) as 

(i ) = 

{
e −(C rms (i ) −γ ) 2 − 0 . 3 if σ ≤ 10 

1 . 4 else 
(8) 
here γ is the mean value of the RMS contrast ( C rms ) and, as sug-

ested by the HV models for smooth regions, we chose the γ value

o be 0.01. 

We call the proposed JND model for the smooth region as the

MS–NAMM, and this algorithm has the ability of incorporating

he important component of the HV, CS by measuring RMS con-

rast. This inclusion of RMS contrast significantly improves the

AMM [8] , and the proposed RMS–NAMM is able to produce more

isually appealing results as compared to the existing pixel domain

ND algorithms [6–8] (details are given in the experimental results,

ection 3 ), in the smooth regions. 

.3. High frequency regions 

In HV, the contrast threshold which is the minimum contrast

equired to see a target reliably and it is a reciprocal of the con-

rast sensitivity [4] , does not increase monotonically with the RMS

ontrast [1] . In fact, the contrast threshold increases with RMS con-

rast, and above 0.4 RMS contrast, the contrast threshold starts to

ecrease. Even, with the RMS contrast value at 0.8, the contrast

hreshold becomes approximately similar to the contrast threshold

t 0 RMS contrast [1] . In the situation of RMS contrast above 0.4,

ith a high amount of change in the signal, the contrast control

ain mechanism of the HV cannot adapt efficiently and this change

an be sensed by the HV. 

On the other hand, if the RMS contrast is below 0.4 [1] , the high

mount of change in the signal cannot be sensed by the HV, as HV

an attenuate this change [1,2,4] by adjusting the contrast control

ain. The JND in the high frequency regions is mainly dominated

y CM [6–8] . The above given arguments suggest the need for in-

lusion of RMS contrast with the CM. Hence, in the proposed algo-

ithm, we modulate CM to efficiently control the JND estimation in

he high frequency regions. 

In short, the contrast gain mechanism of the HV can adapt and

lleviate the effect of contrast change (contrast adaptation) if the

MS contrast is below 0.4, and above this RMS contrast, the ability

o adapt to change in the signal decreases [1,2] . The contrast con-

rol gain mechanism provides a degree of contrast invariance (abil-

ty of the human visual system to adapt to the change in contrast)

2] . In view of this, we inspired by the HV models [1,4] we pro-

ose a feed-back mechanism based upon the RMS contrast, which

an control the CM. We modulate the CM for estimating the JND

n high frequency areas as; 

 N D HF (i ) = CM(i ) × e −(C rms (i ) −0 . 75) / (σHF ) − C (9)

here CM ( i ) is the contrast masking of the i th pixel, which is es-

imated using the prediction errors [6] ( CM(i ) = e 1 (i ) if the pixel

elongs to the texture category and CM(i ) = e 2 (i ) , otherwise), and

 and σ HF are the constant values. From experiments, for the tex-

ure pixels we chose C and σ HF to be 0.1 and 2, respectively. As

he HV is more sensitive to edge regions as compared to texture

nes [23] , CM should have a lower value in such regions. With this

iew, for the edge pixels these values were chosen to be 0.8 and

, respectively. Here, C rms ( i ) is the RMS contrast (3) of the input

mage. 

To estimate the efficient JND HF , the CM is controlled by the

eed-back parameter, as shown in Fig. 2 . This feed-back parameter

nhances the effect of prediction errors (CM) if the RMS contrast

s below 0.4 and consequently, the JND can have a higher value.

n the other hand, the feed-back parameter dampens the effect of

rediction errors if the RMS contrast of the input image reaches

he limit at which the humans can sense the change [1] in the sig-

al. In this situation, the CM should be reduced. Hence, this feed-

ack parameter modulates the CM, in such a way that the HV can-

ot sense any change. 



370 V. Jakhetiya et al. / Neurocomputing 275 (2018) 366–376 

Fig. 2. Proposed relationship between the RMS contrast and feed-back parameter 

for texture regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Scoring strategy for the subjective on-line test. 

Score 0 1 2 3 

Description Same quality Moderately better Better Much better 
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The proposed algorithm is the first pixel domain JND algorithm

which is able to modulate the effect of CM by incorporating the

essential component of the HV, contrast sensitivity (by measuring

RMS contrast). For this reason, the proposed algorithm can effi-

ciently alleviate the under- or over- estimation of the CM and pro-

duces better results (more details are given in the experimental

results, Section 3 ) as compared to the existing pixel domain JND

algorithms. The proposed algorithm, especially performs very well

when over estimation of CM occurs, as in this situation the change

in the signal guided by the CM can be easily sensed and the output

image, therefore looks visually unappealing. 

2.4. Overview of JND estimation model 

In the proposed algorithm, we consider three steps for effi-

ciently estimating the JND value (as shown in Fig. 3 ). These three

steps are the following: (1) classification of the input image into

smooth, edge and textural regions; (2) the proposed RMS–NAMM

for the smooth pixels; and (3) the feed-back mechanism for the

edge and texture pixels. As discussed earlier, for smooth pixels, the

JND value is mainly dominated by the LA and the CM does not

contribute much, while for the edge and texture pixels, both fac-

tors (LA and CM) contribute significantly [8,20] . So, in order to cal-

culate the final JND value, we have adopted the non-linear NAMM

[8] to remove the overlapping between JND smooth and JND HF . The

final JND value is calculated as: 

J N D (i ) = J N D smooth (i ) + J N D HF (i ) 

− 0 . 3 × min { J N D smooth (i ) , J N D HF (i ) } (10)

3. Experimental results 

In this paper, we propose a comprehensive JND estimation

model based upon the CS (RMS contrast) and feed-back mecha-
Fig. 3. Brief overview of the
ism. The proposed algorithm is compared with the state-of-the-

rt pixel domain JND algorithms, such as the NAMM [8] , Liu’s et al.,

ethod [7] and Wu’s et al. method [6] . To compare the proposed

lgorithm with the existing pixel domain JND algorithms, noise is

njected (shaped) into the image and this noise shaping is guided

y the corresponding JND (of each algorithm). The noise shaping is

one as follows: 

ˆ 
 i = B i + β × �i × J N D i �i ∈ {−1 , +1 } (11)

For the fair comparison, all algorithms should inject noise with

he same energy (in terms of MSE), and this is achieved by reg-

lating the parameter β . A better JND model should be able to

ide (inject) a higher amount of noise than others while being in-

ensitive to the human visual system. Alternatively, with the same

mount of noise injection, the noise injected images using a better

ND model should look more visually appealing than other noise

njected images. Similar to the previous studies [6–8,20] , we also

njected same amount of noise and checked the accuracy of the

roposed algorithm. 

.1. Subjective testing methodology 

In order to compare the proposed JND algorithm with the ex-

sting pixel domain JND algorithms, an on-line subjective viewing

est was conducted on 12 widely used test images. This subjective

est was similar to the DSCQS (Double Stimulus Continuous Qual-

ty Scale) type II (ITU-R BT.500–11) standard [11] . The only differ-

nce between the DSCQS standard and method used to validate the

roposed algorithm is that in DSCQS standard testing is performed

n the laboratory conditions, while in the proposed algorithm, we

hose to have an on-line subjective evaluation. The outcome of the

n-line subjective test is shown in Table 4 . For each case, two im-

ges were randomly shown side by side and subjects were asked

o compare these images and give the better image a score ac-

ording to the description in Table 3 (as shown in Fig. 4 ). One of

hese two images was a noise injected image according to the pro-

osed algorithm and the other was with the existing JND algorithm

6–8] . The viewing conditions are same as those followed in [6,7] .

he test conditions are different than the used in [6,7] , as in these

lgorithms subjective tests were performed in the laboratory con-

itions. In order to have a more practical comparison of the pro-

osed algorithms with existing algorithms, we preferred on-line

ubjective testing over the subjective testing done in the labora-
 proposed algorithm. 
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Table 4 

Comparison results of the on-line subjective test for the noise injected images, guided with the existing and proposed 

JND models. 

Image MSE Mean Standard deviation 

Prop. Vs [8] Prop. Vs [7] Prop. Vs [6] Prop. Vs [8] Prop. Vs [7] Prop. Vs [6] 

Machine 142.75 0.730 0.324 0.568 0.932 0.884 1.094 

Barbara 152.32 1.757 1.162 1.757 0.955 1.014 0.895 

Bike 305.41 1.081 0.892 0.054 1.233 0.966 1.268 

Cameraman 97.53 1.757 0.676 1.162 1.090 1.292 0.958 

Computer 67.76 1.811 0.784 0.892 0.844 1.158 0.809 

Lena 52.00 1.162 0.216 0.540 1.014 1.004 0.869 

Monarch 40.92 0.541 0.540 0.243 1.117 0.803 0.956 

Peppers 52.65 0.892 0.459 0.432 0.737 0.836 0.689 

Pirate 87.44 0.757 0.730 0.568 1.234 1.018 0.929 

Ruler 509.6 1.459 0.703 1.162 1.260 1.102 1.482 

Target 196.83 1.757 1.081 1.405 1.342 1.422 1.518 

Tire 151.08 2.108 0.892 1.216 0.737 1.286 1.084 

Average 1.318 0.705 0.833 1.046 1.065 1.046 

Fig. 4. The graphical interface of the on-line subjective evaluation. One of these two ‘Barbara’ images is a noise injected image according to the proposed algorithm and the 

other is with the existing JND algorithm [6–8] . 

t  

t  

 

a  

p  

s  

e  

e  

a  

f  

g  

o

ory conditions. As screen properties such as size and contrast of

he display screen can not be controlled during the on-line testing.

In the subjective test, 37 subjects were asked to judge the im-

ges, and among these subjects, there was a good mix of image

rocessing experts and non-experts (as shown in Fig. 5 (e)). Each

ubject is asked to perform 36 assessments (12 images and for
ach image, a comparison between the proposed algorithm and 3

xisting algorithms [6–8] ). During the on-line evaluation, we have

sked five questions to the subjects, these five questions give in-

ormation about the device used during the subjective evaluation,

ender, age, education level and expertise in the image processing

f the subjects. 
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Fig. 5. Distribution of the device used by subjects (a), gender (b), age (c), education level (d) and expertise in image processing (e) of the 37 subjects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The dependency of the performance of the proposed algorithm on expertise 

in image processing of subjects. Here horizontal axis represents the image process- 

ing expertise of 37 subjects, while the vertical axis shows the mean value of scores 

given by subjects. 

T  

a  

s  

c  

a  

s

 

s  

j  

d  

p  

c  

e  

g  

e  

i  
This on-line subjective was done using the Google form and we

have asked 37 subjects to fill this Google form. These 37 subjects

were from the Singapore, South Korea, Hong Kong, USA, France,

and India. In the on-line subjective test, we have requested sub-

jects to spend less than 5 s on each pair of images and viewing dis-

tance should be between 14” and 24”. One session typically takes

5–15 min. The distributions of the age, gender, education level, de-

vice and expertise in image processing of the subjects are shown

in the Fig. 5 . 

3.2. Quantitative results 

The comparison results of the subjective test are shown in

Table 4 . The mean value is the average score of the 37 subjects and

a positive or negative mean score shows whether the proposed al-

gorithm is better or worse than the other algorithms, respectively.

For example, the mean value (of scores given by 37 subjects) for

‘Barbara’ image is 1.757 when noise injected images guided by the

proposed algorithm and Wu’s et al. method [6] are shown side by

side during the on-line evaluation (as shown in Fig. 4 ), which sug-

gests that the noise injected image using the proposed algorithm

was chosen to be moderately better or better than Wu’s et al.

method [6] , during on-line evaluation. For all of the 12 images, the

proposed algorithm achieves a positive mean value, which clearly

suggests that it produces more visually appealing noise shaped

images than the other existing pixel domain JND algorithms

[6–8] with the same amount of noise injection. 

In the proposed algorithm, the standard deviation is used to

verify the consistency of the subjects during the on-line subjec-

tive evaluation and sustainability of the method chosen to eval-

uate the proposed algorithm. The Lower standard deviation, sug-

gests similar scores were given by the 37 subjects for a particu-

lar image during the on-line evaluation and subjects were consis-

tent, and vice-versa. The average standard deviation of responses

given by the 37 subjects for 12 images is close to 1 (as shown in
able 4 ) when noise injected images using the proposed algorithm

nd state-of-the-art algorithms [6–8] were shown side by side. It

uggests that throughout the subjective experiment, subjects were

onsistent and the majority of the subjects chose the same im-

ge as better than the other and gave a nearly similar quality

core. 

In order to show that the proposed algorithm has better noise

haping capability and this capability can be perceived by the sub-

ects with different levels of expertise in image processing, in Fig. 6

ependency of the performance of the proposed algorithm on ex-

ertise in image processing of subjects is shown. From Fig. 6 , one

an observe two important aspects, (1), even the subjects with no

xperience in image processing can perceive that the proposed al-

orithm has better noise shaping capability with respect to the

xisting algorithms [6–8] ; (2), subjects which are experts in the

mage processing can perceive more difference between the noise
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Fig. 7. Comparison of subjective quality for cropped noise injected (MSE = 196.83) ‘Target’ image guided by the (a) NAMM [8] , (b) Liu’s et al. method [7] (c) Wu’s et al. 

method [6] and, (d) the proposed algorithm. 
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haped images guided by the proposed algorithm and existing

lgorithms. 

.3. Qualitative results 

In order to show the contribution and efficiency of each in-

ividual component of the proposed algorithm, we show three

ubjective experimental results for the RMS–NAMM, feedback

echanism and, overall proposed JND model in Figs. 7 –9 , respec-

ively. 

To show the efficiency of the proposed RMS–NAMM, we in-

ected similar amount of noise (in terms of MSE) guided by the

roposed algorithm and existing algorithms [6–8] . In these three

lgorithms guided noise is mainly dominated by the LA and spa-

ial masking (SM), only the LA and both LA and SM in smooth re-

ions, as suggested by the NAMM [8] , Liu’s et al. model [7] and

u’s et al. model [6] , respectively. Similarly, in smooth regions, in

he proposed algorithm noise injection is mostly due to the RMS–

AMM and feed-back mechanism has a little impact. This noise

njection is based on (11) and a similar amount of noise is in-

ected by controlling the parameter β . From Fig. 7 , it can be ob-

erved that the existing algorithms cannot shape the noise effi-

iently and the injected noise is visible. This effect is quite visible

n the smooth areas, which have low luminance. These experimen-

al results confirm that inclusion of CS can significantly improve

he existing NAMM [8] . The proposed JND model based upon the

MS-contrast can efficiently represent the HV and out-performs
he existing pixel domain JND algorithms [6–8] in the smooth

reas. 

The existing pixel domain JND algorithms [6–8] do not have any

eed-back mechanism, and CM estimation is only based upon ei-

her edge strength [7,8] or prediction error [6] . Therefore, these al-

orithms may suffer from under and over estimation of CM [22] .

n Fig. 8 , noise injected ‘Ruler’ image is shown, in which noise

s guided using the proposed algorithm and existing algorithms

6–8] . It can be observed from Fig. 8 that the NAMM [8] and Liu’s

t al. method [7] produces visually appealing noise injected im-

ges (this noise injection is mainly guided by the CM, in high fre-

uency regions) but a much lower amount of noise has been in-

ected (MSE = 36.35 for the NAMM [8] and MSE = 45.77 for Liu’s

t al. model [7] ). This is a case of under estimation of CM, as more

oise can be shaped without being noticed. On the other hand,

ree-energy principle based Wu’s et al. method [6] cannot predict

he high-frequency regions [9,12] and produce large prediction er-

ors and subsequently inject a lot of noise in such regions, which

an be easily perceived by our human vision. This is a condition

f over-estimation of contrast masking, as shown in Fig. 8 (c). Our

roposed algorithm, based upon the feed-back mechanism, can al-

eviate the problem of over- and under-estimation of the CM (as

hown in Fig. 8 . (d)) and estimate the maximum value of the

M. These experimental results confirm the need for the feed-back

echanism, in high frequency regions. 

In Fig. 9 , the efficiency of the overall proposed JND model

10) (which includes the effect of both the RMS–NAMM and feed-

ack mechanism) is shown. The ‘Barbara’ image with the same
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Fig. 8. Over and under estimation of the contrast masking for cropped ‘Ruler’ image. Noise injected images with (a) NAMM [8] (MSE 36.35), (b) Liu’s et al. method [7] (MSE 

45.77), (c) Wu’s et al. method [6] (MSE 3486.94) and (d) proposed algorithm (MSE 290.25), respectively. 
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amount (equal MSE) of noise injected are shown in Fig. 9 , and this

noise injection is guided by the proposed and existing pixel do-

main JND [6–8] algorithms. It can be observed from Fig. 9 that the

noise injected images guided by the existing JND algorithms look

noisy in the smooth areas, specifically in the low luminance re-

gions. During the subjective evaluation, we also asked subjects to

give their reasons behind preferring one image over others. Some

of the subjects during the on-line evaluation gave comments about

noise in the smooth areas (one user commented, “Some images

looks noisy.” and another user said, “Preferred one is less noisy.

Seems like the noise is more noticeable on flat and dark region”).

Furthermore, the proposed algorithm also considers the effect of

CS, and hence, the noise injected image corresponding to the pro-

posed JND model is relatively noise-free and visually more appeal-

ing, as shown in Fig. 9 (d). The proposed algorithm uses the RMS

contrast and feedback mechanism to efficiently estimate the JND

value, and because of the RMS contrast, the proposed algorithm in-

jects a slightly lower amount of noise into smooth areas (as shown

in Fig. 7 ), while the maximum amount of noise is injected in the

high frequency regions, which cannot be identified by the HV. 

The above discussed and shown experimental results confirm

the importance of CS and the need for the feed-back mechanism

for estimating the efficient JND value in the pixel domain. From

these experimental results, it can be concluded that the proposed

JND model produces significantly better results as compared to the

existing state-of-the-art pixel domain JND algorithms [6–8] and the

proposed algorithm best matches with human perception. 
. Discussions 

This work presents a new JND algorithm using the RMS contrast

nd feed-back mechanism. We feel, this work would be quite use-

ul for the researchers working in the area of image quality assess-

ent and water-marking, especially for quantitatively judging the

uality of Screen Content (SC) images [32] , as SC images contain a

ot of rapidly varying edges (e.g. textual regions [32] ) and in such

ituations algorithms in [6] and [7,8] over and under estimate the

M, respectively. These arguments can be validated by seeing the

ecent research on IQA of SC images [32,34] , which suggests that

ree-energy principle based algorithms [25,33] can not predict im-

ge quality efficiently, due to the over-estimation of CM in textual

egions. Our proposed algorithm has a few limitations that should

e improved in the future, such as: 

1. The performance of the proposed algorithm is nearly similar

to the performance of Wu’s et al. method [6] in high spa-

tial frequency regions, when input image does not have any

rapidly varying edges which result into no over-estimation

of CM. 

2. The proposed algorithm is specifically designed to estimate JND

values for the natural images. In future, we will try to create

a generic JND algorithm, which can suit the characteristics of

the diverse variety of images (such as natural, depth, graphical,
tone-mapped) to efficiently estimate the JND thresholds. 
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Fig. 9. Comparison of the proposed JND model with state-of-the-art pixel domain JND algorithms. These four rows show four respective noise injected, ‘Barbara’ images 

(MSE = 152.32), with (a) the NAMM [8] , (b) Liu’s et al. method [7] , (c) Wu’s et al. method [6] and (d) the proposed algorithm. 
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All of these requirements pose new challenges to the re-

earchers working in the area of JND and IQA. In future, we will

ttempt to integrate proposed JND model with the IQA, especially

or assessing the quality of SC and graphic images, as these areas

re relatively less explored [32,34] . 

. Conclusion 

In this paper, we have presented the first pixel domain JND al-

orithm that includes a fundamental component of human vision,

amely contrast sensitivity (via RMS contrast). Therefore, an over-
ight in the existing relevant models is addressed. In the proposed

lgorithm, we consider Luminance Adaptation, Contrast Masking

nd RMS contrast to efficiently estimate the JND value in the

mooth regions. For edge and texture regions, we have also pro-

osed a feed-back mechanism based upon the RMS contrast to ef-

ciently control the CM, and a prediction based algorithm is used

o classify an image into smooth, edge and texture regions. From

xperiments, it has been validated that the proposed algorithm ef-

ciently matches with human perception and performs much bet-

er than the state-of-the-art pixel domain JND algorithms. 
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