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Abstract—In this work, we resolve a big challenge that most current image quality metrics (IQMs) are unavailable across different
image contents, especially simultaneously coping with natural scene (NS) images or screen content (SC) images. By comparison
with existing works, this paper deploys on-line and off-line data for proposing a unified no-reference (NR) IQM, not only applied to
different distortion types and intensities but also to various image contents including classical NS images and prevailing SC images.
Our proposed NR IQM is developed with two data-driven learning processes following feature extraction, which is based on scene
statistic models, free-energy brain principle, and human visual system (HVS) characteristics. In the first process, the scene statistic
models and an image retrieve technique are combined, based on on-line and off-line training instances, to derive a novel loose classifier
for retrieving clean images and helping to infer the image content. In the second process, the features extracted by incorporating the
inferred image content, free-energy and low-level perceptual characteristics of the HVS are learned by utilizing off-line training samples
to analyze the distortion types and intensities and thereby to predict the image quality. The two processes mentioned above depend
on a gigantic quantity of training data, much exceeding the number of images applied to performance validation, and thus make our
model’s performance more reliable. Through extensive experiments, it has been validated that the proposed blind IQM is capable of
simultaneously inferring the quality of NS and SC images, and it has attained superior performance as compared with popular and
state-of-the-art IQMs on the subjective NS and SC image quality databases. The source code of our model will be released with the
publication of the paper at https://kegu.netlify.com.

Index Terms—Image quality metric (IQM), natural scene (NS) image, screen content (SC) image, no-reference (NR), data-driven
process, big data learning, on-line, off-line
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1 INTRODUCTION

T HROUGH wire transmission or wireless transmission, u-
biquitous networks have largely shortened the interper-

sonal distances. For example, due to the explosive growth of
science and technology, our communication with each other
becomes more prompt, convenient and comfortable with the
equipments developed from wire phones to wireless cellulars,
and further to the video telephones. On the other hand, with
the emergence of mighty search engines, people are capable of
effectively and efficiently finding and obtaining the required
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information by text search or even by image search based
on popular image retrieval technologies [1]. In this paper, we
propose a novel solution to resolve a difficulty in the research
of blind image quality assessment by turning to the networks
and search engines.

The study of image quality metrics (IQMs), especially no-
reference (NR)/blind IQMs, has long attracted a wide range
of attention owing to its two aspects of pivotal functions: 1)
monitoring the quality degradation caused by image acquisi-
tion, compression, transmission and exhibition [2]-[5]; 2) op-
timizing the parameters utilized in image processing systems
such as denoising, deblurring and enhancement [6]. Most of
present blind IQMs were applied to two types of application
scenarios. The first type of models is the distortion-specific
quality metrics of natural scene (NS) images, typically applied
for compression [7]-[8], blurriness [9]-[10], tone mapping
[11]-[12], 3D synthesization [13]-[14], etc, and the second
type of models is the general-purpose NS IQMs [15]-[25].
Mathematically, the above two types of NR IQMs concentrate
on solving the subsequent optimization problem by finding the
optimal parameter vectors:

θ∗t ,θ
∗
l = arg minθt,θl

∥∥∥Q(x)− P(x;θt,θl)
∥∥∥
D

(1)

where x is an image; Q and P are truth and predicted quality
scores; ‖ · ‖D computes the distance of two terms contained
based on the D measure; θt and θl are two parameter vectors
to be determined, one each for differentiating the distortion
types and levels. In general, a general-purpose NR IQM with
high efficacy and efficiency is much more desirable.
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However, it is not hard to find that both these two types of
NR IQMs were developed particularly for blindly predicting
the quality of NS images, overlooking the ‘generality’ across
different image contents, namely, the hotly researched screen
content (SC) images. During the last several years, a growing
number of attentions have been shifted to the exploration of
the SC images, such as compression, quality evaluation, and
segmentation. As compared to the NS images that have been
long studied for decades, limited endeavors have been devoted
to the SC images. There include obvious differences between
the NS and SC images. By contrast, the former ones usually
contain rich and complicated distributions of luminance and
color, while the latter ones are generally composed of fewer
luminance and color variations and simpler structures. To deal
with this issue, Gu et al. proposed a blind quality measure
for SC images (BQMS) through firstly extracting features in
terms of a statistical model of SC images before learning the
features to predict the image quality based on a great number
of training samples [26].

Transparently, a more unified NR IQM, which is not only
applied to different types and levels of distortions but also to
both NS and SC images, is higher desired. So it is reasonable
to modify Eq. (1) to be

θ̂
∗

= arg minθ̂

∥∥∥Q(x)− P(x; θ̂)
∥∥∥
D

(2)

where θ̂ = {θt,θl,θc} with θc denoting a parameter vector
for distinguishing the content type of a distorted image. To
specify, we figure out this problem via a two-step framework.
The first step is to propose a new loose classifier for judging
which type (NS or SC) of an input image belongs to. We
can straightforwardly use the natural scene statistics (NSS)
model [27] to infer the type of a lossless image. However, as
for a lossy image, this classification is not easy since the NSS
regulation was shown to be broken when introducing unnatural
distortions (e.g. blur and noise), or texts and/or graphics
[16]. That is to say, in the blind IQM, we need to devise a
reliable technique which can accurately distinguish corrupted
NS images and SC images. This paper attempts to cope with
this problem based on real-time on-line training instances and
the above-mentioned NSS model. Briefly speaking, we firstly
apply the image search technology to retrieve several high-
quality images that are akin to the input image from cloud.
Then a pre-trained NSS-based classifier is deployed to identify
the types of those similar high-quality images and thus to
deduce the input image’s content type. Experiments validate
that combining image search technique and NSS model is
capable of precisely classifying distorted SC images and NS
images. Note that the image retrieving relies on real-time on-
line training data downloaded by networks, while, the pre-
trained NSS model is built based on a large class of off-line
training samples gathered via networks beforehand.

The second step of our framework is to assess the quality
score under the condition that the image type is known. One
direct way is to deploy two blind IQMs, one each for NS
images and SC images, such as C-DIIVINE [17] and BQMS
[26]. Apart from the ad-hoc problem, this solution also brings
a problem that, unlike the BQMS that was proposed using a

large quantity of training data, the C-DIIVINE model was not
developed based on big-data samples but a small-size image
database. It is lucky that a recently designed statistic model
was found to simultaneously well applied to NS images and
SC images. On the basis of this statistic model, we extract 13
features from the input image, regardless of distortion types,
distortion levels and content types. Afterwards, in accordance
to the type of the input image inferred using the first step, we
incorporate the above 13 features with a pre-trained regression
module to generate the quality prediction. In this research, we
separately take advantage of 100,000 NS images and 100,000
SC images, which were off-line training data collected using
networks, to learn the two regression modules beforehand,
followed by employing the proper one in light of the inferred
content type for fusing the extracted features and predicting
the image quality score. It deserves to stress that the proposed
UBQI is the first blind IQM which can simultaneously assess
the quality of both NS and SC images.

In the remainder of this paper, we arrange the structure as
follows. Section 2 reviews representative and relevant works
during recent years. Section 3 describes the proposed unified
NR IQM, including how to distinguish distorted NS images
and distorted SC images and learn the fixed regression mod-
ule using on-line and off-line training instances downloaded
via networks. Section 4 demonstrates the superiority of our
proposed quality model by comparison with mainstream and
state-of-the-art full-reference (FR) and NR IQMs. Section 5
concludes the whole paper.

2 RELATED WORK

During the past years, hundreds of NR/blind IQMs were
elaborately developed. In this section, we first review some of
popular NR quality models of NS images. Next, we introduce
prevailing explorations of SC image quality evaluation from
two aspects: subjective assessment and objective assessment.

For blind IQMs devoted to NS images, they can be basi-
cally categorized into distortion-specific models and general-
purpose models. The distortion-specific models are heavily
suitable for one certain type of distortion. For example, in
[10], Li et al. proposed a blind image blur evaluation index to
characterize blur with discrete moments by considering that
noticeable blur affects the moment magnitudes of images.

By contrast, the general-purpose models which can tackle
different distortion types attract much attention due to their
wider application scopes compared with the distortion-specific
models. In [15], Mittal et al. designed the blind/referenceless
image spatial quality evaluator (BRISQUE) based on the
observation that there exist some statistical properties in natu-
ral images and they are influenced by corruptions. In [18],
Gu et al. devised the NR free energy based robust metric
(NFERM) that primarily relies on a structural computational
model of HVS that incorporates the free-energy based brain
principle and low-level perceptual characteristics of HVS. The
aforementioned models are opinion-aware (OA), requiring hu-
man opinion scores. This inevitably leads to the performance
instability of blind IQMs models since subjective experiments
are always high-expense and time-consuming and therefore a
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Fig. 1: Illustration of image statistics: (a) SCI (SC image); (b) NSI (NS image); (c) the histogram of MSCN coefficients of (a)-(b); (d)-(e)
histograms of MSCN coefficients of images (a)-(b) under the distortions of blur, noise and JPEG compression.

large number of human-labeled training samples are difficult
to collect.

To that end, another type of opinion-unaware (OU) blind
IQMs independent of real human ratings are greatly popular
in recent years. A pair of representative OU models are the
natural image quality evaluator (NIQE) [16] and its modified
version of the integrated local NIQE (IL-NIQE) [19]. The
NIQE provides a NSS-based regularity which was established
upon hundreds of unlabeled natural images, and then it takes
the distance between a corrupted image and the above regu-
larity for the quality prediction. Along the same research line,
the IL-NIQE introduces three more statistical features from
the viewpoints of image gradient, Log-Gabor filter responses,
as well as colorfulness.

Notwithstanding the great successfulness achieved by the
NR IQMs illustrated above, they are merely fit for assess-
ing the quality of NS images, yet not good at the quality
assessment of SC images [26]. That is, there does not exist
a NR quality model which is simultaneously good at NS
images and SC images. To fill in this research gap, recent
years have witnessed a few ground-breaking researches. On
the one hand, in subjective assessment, Yang et al. established
the first screen image quality assessment database (SIQAD)
[28], which is composed of 20 lossless SC images and their
associated 980 corrupted images under seven typical types of
degradations, i.e., JPEG2000 compression, JPEG compression,
layer segmentation-backed coding, motion blur, Gaussian blur,
Gaussian noise, and contrast change. On the other hand, the
objective BQMS [26] was developed based on the screen
content statistics (SCS) model. It was found that the BQMS
model established based on both real human ratings and FR
IQM based labels has achieved better performance than the
existing NR IQMs.

3 PROPOSED MODEL

The majority of present NR IQMs have the same limitation,
merely proper for quality prediction of NS or SC images. To
resolve this problem, we in this work contrive a unified blind
quality index (UBQI) for assessing the image quality without
any prior knowledge regarding distortion categories and image
contents (namely tackling both NS and SC images). Actually,
many studies have pointed out that existing models dedicated

to the NS images are improper for SC images [29]-[31]. On
one hand, from the intuitive perspective, obvious differences
exist between NS images and SC images. Fewer and simpler
luminance and color changes are mostly included in the SC
images, yet rich and complex luminance and color variations
are often encompassed in the NS images. On the other hand,
from the viewpoint of research experience, detailed structures
in SC images receive more attention whereas basic structures
in NS images arouse more considerations. According to these
observations, we propose the UBQI by firstly using a loose
image classifier1 to judge the input image’s type and then
selecting the appropriate model for quality evaluation, and we
thus rewrite Eq. (2) as

θ̂
∗

= arg minθc
arg minθt,θl

∥∥∥Q(x)− P(x; θ̂)
∥∥∥
D
. (3)

3.1 Loose Image Classifier
We illustrate the proposed loose image classification under
the subsequent two conditions: one refers to classifying the
lossless NS images and SC images and the other refers to
classifying the lossy NS images and SC images. Obviously,
the latter loose image classifier, whose basis is the former
classifier, is our terminal target.

3.1.1 Loose classifier of lossless images
The NSS regulation reveals that there exist certain statistical
characteristics of the lossless NS images. But the character-
istics will be destroyed when texts and/or graphics are added
to the images; in other words, the characteristics do not take
effects in the lossless SC images [16], [27]. For illustration
consider the example in Fig. 1. Figs. 1(a)-(b) provide two
representative lossless images, separately associated to SC and
NS images chosen from the SIQAD and LIVE databases [28],
[32]. Fig. 1(c) illustrates two histograms of mean subtracted
contrast normalized (MSCN) coefficients of images shown in
Figs. 1(a) and (b). The MSCN coefficients are generated by
imposing local mean removal and divisive normalization on
the input image x:

x̂(i, j) =
x(i, j)− µx(i, j)

σx(i, j) + ε
(4)

1. Loose image classifier means a kind of classifier which can discriminate
NS images and SC images.
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TABLE 1: Primary principle of the used image search technology.

Step Description

1 Rescaling the input images to the resolution of 8×8, 64 pixels in total.
2 Converting the rescaled colorful images into grayscale images.
3 Calculating the mean value of all the 64 image pixels.
4 Thresholding each of 64 pixels as 1 if no less than the mean value; otherwise 0.
5 Computing the Hash code of the above 64-bit integer.

Fig. 2: A basic flow diagram of the proposed loose image classifier.

where i and j means the horizontal and vertical indices; ε is
a tiny fixed number to eliminate the division-by-zero; µx(i, j)
and σx(i, j) are local mean and variance maps defined by

µx(i, j) =
∑
s

∑
t

w(s, t)x(i+ s, j + t) (5)

σx(i, j) =

(∑
s

∑
t

w(s, t)[x(i+s, j+t)−µx(i, j)]2
) 1

2

(6)

where w = {w(s, t)|s = −3,−2, ..., 3; t = −3,−2, ..., 3}
is one 2D circularly-symmetric Gaussian weighting function.
From Fig. 2(c), we can see that the lossless SC image exhibits
a Laplacian-like MSCN distribution, whereas, the lossless NS
image produces a Gaussian-like MSCN distribution. Based on
this finding, we propose an efficient loose classifier with the
following steps: 1) computing the MSCN coefficients of an
input image; 2) sampling the histogram of MSCN coefficients
to form a n-dimensional vector from -2 to 2 with an interval of
4

n−1 ; 3) learning the n-dimensional vector to judge the input
image’s type. The reason that we use the range of [−2, 2] is
because, in most images, the MSCN values out of this range
are usually too sparse to be ignored [15]. Here we assign n
to be 81 and exploit the support vector machine (SVM) [33]
for learning. Comparison with other machine learners such as
random forests [34] will be compared in the next section.

3.1.2 Loose classifier of lossy images
Nevertheless, in many application scopes, images suffer from
different categories of distortions, such as compression, blur,
noise, and transmission error. Distortions and texts and/or
graphics all reshape the histogram of MSCN coefficients, and
thereby the NSS-based loose classifier provided above does
not work anymore. From Fig. 2, we find that, the JPEG
compressed NS image has a Laplacian-like MSCN distribution
as given in Fig. 2(e), which is quite similar to that of the
lossless SC image as shown in Fig. 2(d). Therefore, the loose
classifier between lossy SC images and NS images poses a big
challenge. A simple and straightforward solution is to restore
the input lossy images with, e.g., denoising, deblurring, etc.
But one main target of loose classifier is to find more suitable
models or parameters for processing the input image and

thus getting better-quality output images. That is, this solution
seems meaningless, or even put upside down. Note that the
loose classifier of lossless images mentioned above only uses
the statistical information, rather than the pixel-level image
information. Based on this consideration, a new solution will
be proposed in this paper to restore the statistical information
of a given lossy image.

Our new solution implements relying on the image search
technique and cloud data. More concretely, as for an image
(no matter whether it is lossless or not), a large quantity of
images which have the similar content to the given image are
retrieved from cloud using an image search algorithm. This is
akin to recent cloud-based image processing technologies to
some extent [35]-[36]. Images of poor quality are inevitably
retrieved from cloud. To this end, we then pick high-quality
images out from the images retrieved. It can be observed that
those high-quality retrieved images, in most cases, have the
same content type (NS or SC) with the input image; that is,
they have the similar statistical information to the input image.
Presently, we have found some replacements, which can be
roughly regarded to be lossless and have the same content with
the input image, and thereby we can apply the loose classifier
for lossless images proposed above to those replacements to
faithfully infer the content type of the input image.

According to the primary idea mentioned above, this work
introduces a new network-based loose image classifier which
implements with the following steps. First, about 100 images
similar to the input image are retrieved from cloud using an
image search technology [37], whose elementary principle is
composed of five steps as shown in Table 1. Superior image
search technologies can be introduced in the future work
to improve the implementation efficacy and efficiency. More
comparisons concerning the performance of image search
technologies can be directed to [38]. In this work we use some
specific visual features, consisting of shapes, colors, geometric
configuration, textures, etc, to assist the computers to under-
stand what the image looks like. Second, we rank the retrieved
100 images according to their quality and pick the nine best-
quality images out, because we are unable to guarantee the
images of high quality. To the best of our knowledge, there
is no general blind IQM that works effectively for quality
evaluation of both NS images and SC images. Therefore, this
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TABLE 2: Main steps for type deduction of chosen images.

Step Description

1 Building a pre-trained classifier based on a large number
of lossless NS images and SC images.

2 Extracting the 81-dimensional vector of MSCN parameters
from each of the nine chosen images.

3 Deducing the content type of chosen images by inputting
the 81-dimensional vectors into the pre-trained classifier.

paper simply compares the bits per pixel (bpp) of each image
for ranking. In reality, the proposed loose classifier of lossless
images is of substantially high accuracy when an image has
relatively large bbp value. Trials for validating this will be
provided in the next section. Third, for each chosen image,
we estimate its MSCN coefficients and sample the histogram
of MSCN coefficients to constitute an 81-dimensional vector
from -2 to 2 with an interval of 0.05. Fourth, we infer
the content type of each chosen image by inputting the 81-
dimensional vector into a pre-trained classifier, which was
learned by conducting SVM on a large number of lossless
NS images and SC images. We summarize the main steps of
type deduction of chosen images in Table 2. Fifth, the content
type of the input image is judged based on the types of the
aforesaid nine chosen images. Note that, as illustrated above,
‘0’ and ‘1’ indicate NS images and SC images. So we can
form a 9-dimensional vector according to the type results of
nine retrieved images. It is clear that the input image is closer
to NS images when the vector includes more zeros. On this
basis, we infer the input image to be NS image when the
sum of the vector is less than 4; otherwise, SC image. For
the readers’ conveniences, as given in Fig. 2, we further draw
a basic flow diagram to help explain how to implement the
proposed loose image classifier.

3.2 Blind Quality Prediction

In the second stage, in terms of the classification results of
content type inferred using the above loose image classifier,
we are able to straightforwardly deploy two different quality
methods, involving a well-designed SC IQM and an elegant
NS IQM, to evaluate the visual quality of a given image. Fig.
3 shows the framework. In practical applications, the module
of ‘SCI IQM’ might be replaced with many image post-
processing algorithms (such as denoising, deblurring, contrast
enhancement, super-resolution, etc) devoted to SC images
and that of ‘NS IQM’ is possibly replaced with image post-
processing algorithms devoted to NS images, toward more uni-
fied image post-processing applications. We are able to further
upgrade the above framework to image patches for identifying
the type of each patch in a given image. Nonetheless, such
type of combination based on two non-handpicked IQMs is
not good due to the lack of consistency in quality assessment.
Fortunately, recent works provide that there is one statistical
model simultaneously applicable to both NS images and SC
images, and based on this, we propose the unified blind UBQI
model. Specifically, the UBQI model is established based on

Fig. 3: The two-phase framework of the proposed UBQI model.

an image quality assessment model with two groups of fixed
parameters. More details will be illustrated as follows.

From the perspective of neuroscience, the Friston’s team
reveals that some brain theories regarding human perception,
action, and learning can be unified by the free energy theory
[40]-[42]. Specifically, we can assume that the human brain
performs the cognitive process by an internal generation mech-
anism, for instance, when perceiving visual signals. The above
process can be described using a probabilistic model, which
is composed of a prior term and a possibility term. The visual
perception infers the posterior likelihood of a given scene by
reversing this possibility term. Albeit the brain structure is
more complex than the level we can recognize to date, a gap
between the cognitive outcome of brain and the actual input
visual signal still exists. It has been verified that this gap is
highly correlated with the quality of human perceptions and
thus can be used for the quality measurement [43]-[45].

Towards operational amenability, it can be supposed that
the internal generation mechanism of the brain is parametric.
Based on this, the internal generation mechanism can adjust
the vector of model parameters ξ to well explain the external
input visual signal. Given a visual signal x, we integrate the
joint distribution J (x, ξ) on the space of model parameters
to define its ‘surprise’:

− logJ (x) = − log

∫
J (x, ξ) dξ. (7)

A model of stronger expressive ability is better at simulating
the brain, but it results in higher computational complexity
and tends to use more parameters. This inevitably leads to
higher model costs and makes it harder to estimate through
observation [46]. In this work, considering the characteristics
of simplicity and strong description ability [45], we choose
the linear AR model as the generative model. As for an input
signal x, the model is defined as:

xk = Λr(xk)a + bk (8)

where k is the index of pixel; xk is a pixel in question;
bk is the error term; Λr(xk) is a row-vector of indices of
xk’s r nearest pixels; a = (a1, ..., ar)

T is a vector of AR
model parameters. We apply the least square method to find
the optimal approximate of a: â = (XTX)−1XTX , where
x = (x1, ..., xr)

T ; X(t, :) = Λr(xt). In real applications, the
predicted x̂ can be finally estimated according to the method
used in [43]:

x̂k = Λr(xk) â. (9)



2332-7790 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2019.2895605, IEEE
Transactions on Big Data

6

Fig. 4: The renewed framework of the proposed UBQI model.

The entropy of residual ‘gap’ is then used to approximate the
free energy of x:

Et(x) = −
∑

h
Hh(x̄) logHh(x̄) (10)

where x̄ = x− x̂ meaning the estimation difference between
a given image and its estimated one; Hh(x̄) is the possibility
denseness of grayscale h in x̄.

From the viewpoint that the HVS is highly sensitive to the
variations occurred in image structures [47], we introduce the
structural degradation information defined by

Sα(x) = G
( σ(α̇x,α̈x) + γ

σ(α̇x)σ(α̈x) + γ

)
(11)

Sβ(x) = G
( σ(β̇x,β̈x)

+ γ

σ(β̇x)
σ(β̈x)

+ γ

)
(12)

where G(·) has the function of computing the global average;
α̇x and β̇x stand for the topical mean and variance of x,
which is calculated by utilizing a normalized Gaussian kernel
w′ = {w′(u, v)|u = −U, ..., U, v = −V, ..., V } with standard
deviation of 1.5; α̈x and β̈x have similar definitions but use an
impulse function instead; σ(◦,•) denotes the partial covariance
between ◦ and •; γ is a small positive constant for removing
the situation that the denominator value is zero. Furthermore
we consider improving the structural degradation information
from the subsequent three angles. First, in order to introduce
diverse amount of adjacent information, we separately assign
select (U, V ) as (1, 1), (3, 3) and (5, 5) in the kernels. Second,
for distinguishing distinct frequency decrease between inside
and outside areas caused by JPEG compression, we compute
Sα(x) and Sβ(x) in the exterior block-edge part and interior
6× 6 part. The last one is that Sα(x) and Sβ(x) are reversed
when Et is smaller than a predefined threshold, to make the
structural degradation information has the consistent change
with image quality. More details can be found in [26].

Early studies show that the structural degradation features
and free energy feature have high linear correlation both for
lossless NS images and SC images [18], [26]. This observation
supplies an inspiration to build new image descriptive features
for image quality evaluation. In particular, we fit the linear
regression model as following:

Et(x0) = lτ · Sτα(x0) +mτ (13)

Et(x0) = nτ · Sτβ (x0) + oτ (14)

where x0 is a lossless image; τ = {i1, i3, i5, e1, e3, e5}; the
parameters lτ , mτ , nτ and oτ are obtained using the least
square method. We further define

T τα (x) = Se(x)− (lτ · Sτα(x) +mτ ) (15)

T τβ (x) = Se(x)− (nτ · Sτβ (x) + oτ ). (16)

When the quality of images are high, T τα and T τβ approach
zero, while their absolute values will be far away from zero
when distortions appear and grow. In such way, we yield 12
structural degradation features. Considering the fact that the
free energy feature has good capability in quality prediction,
the free energy feature is added to finally form 13 features.

After the extraction of features, a large number of training
data are used to find the relationship between the features and
the quality predictions. In order to acquire the data, we apply
more than two million lossy images as training samples, one
half for SC images and the other half for NS images. First,
we picked up larger than a thousand high-quality SC images,
which were downloaded from the website of ‘Google Images’
and selected by human eyes for eliminating low-quality lossy
images, as lossless SC images. Likewise, we collected beyond
one thousand high-quality NS images from Berkeley database
[48] and PQD database [49], instead of from website, to be
lossless NS images. Second, two million lossy images were
generated by corrupting the above stated lossless SC and NS
images with six classical distortion types as deployed in [26].
Having prepared the training samples, we label them by getting
help from FR IQMs. In particular, we utilized the structure-
induced quality metric (SIQM) [50] and perceptual similarity
(PSIM) measure [51], due to their effectiveness in predicting
the quality of SC and NS images, to respectively label the SC
and NS images in training samples.

Eventually, one machine learning tool is required to build
the connection between the 13 features of two million lossy
images to the quality scores predicted using FR IQMs. In this
paper, we apply the libSVM package to conduct the radial
basis kernel backed supporting vector regression (SVR) [33].
To specify, for a training dataset R = {(c1, d1), ..., (cr, dr)},
where ci and di are respectively a vector of 13 features and
the predicted quality score of the i-th training image. We can
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Fig. 5: Twenty lossless source screen content and natural scene images used in our new HSNID database.

express the standard SVR form by

arg min
ω,δ,ν,ν′

1

2
ωTω + η(

r∑
i=1

νi +
r∑
i=1

ν′i) (17)

subject to ωTφ(ci) + δ − di ≤ ρ+ νi,

di − ωTφ(ci)− δ ≤ ρ+ ν′i,

η, ρ > 0, νi, ν
′
i ≥ 0, i = 1, ..., r.

where K(ci, cj) = exp(−k ||ci − cj ||2) uses the radial basis
kernel. We determine the parameters η, ρ and k based on a
large quantity of training data mentioned above. In practice,
several parts such as features are shared and thus we are able
to simultaneously extract features and judge the content type
of an input image, followed by selecting the proper parameters
and regressor in light of the image content type. The renewed
framework of our UBQI model is displayed in Fig. 4.

4 RESULTS AND DISCUSSIONS

This section focuses on validating the performance of the
proposed model from the following two aspects: classification
performance of the proposed loose classifier and prediction
performance of the proposed UBQI model.

4.1 Testing Databases
Before the performance comparison, we illustrate the three
image databases which are considerably proper for this work.
The first one is the LIVE database [32], which were construct-
ed at the University of Texas at Austin in 2006. The database
contains 29 sources and 779 distorted images corrupted by
five classical distortion types. The second database we used in
this paper is the SIQAD database [28], which was established
by Nanyang Technological University (NTU) in the year of
2015. The database is composed of 20 reference SC images
and 980 degraded images, which were produced by applying
seven popular distortion types with seven intensities to the 20
reference images.

However, notice that subjective evaluations in building the
LIVE and SIQAD databases are separately implemented and
thus their quality scores cannot have a sufficient consistency.
This inevitably makes the results unconvincing, hence a new
specific database is highly desired and we therefore built the
first hybrid screen content and natural scene image database
(HSNID), which includes 600 distorted NS images and SC
images generated by corrupting 20 sources at five distortion
levels with six commonly used distortion types (i.e., contrast
change, Gaussian blur, Gaussian noise, JPEG compression,

JPEG2000 compression and motion blur). These 20 reference
images are presented in Fig. 5, in which the top row refers
to SC images while the bottom one refers to NS images.
For scoring the images, the subjective test uses the single
stimulation method based on a 5-point discrete scale from the
worst ‘1’ to the best ‘5’ with the interval of ‘1’. We invited
50 participants to join our experiment to provide their visual
opinion scores of each test image. They are undergraduate or
graduate students at the university, but none of them has any
experience or knowledge of quality evaluation, and thus they
are pre-trained via dozens of images to accommodate them
in advance. The distance between their eyes and the display
monitor is approximately three times the picture height. After
obtaining each test image’s opinion score, the consistency is
checked to ensure the usability of subjective quality grading.
Also, the outlier detection is applied to the results and remove
the data of three participants as outliers. Eventually, the mean
opinion score (MOS) of each image is obtained by averaging
all of its corresponding 47 scores.

4.2 Classification Performance

Based on the above databases, we check the classification
performance of the proposed loose classifiers, respectively
for lossless images and lossy images. First, we consider the
lossless image’s loose classification problem. If the proportion
of samples involved in the classification is unbalanced, the
accuracy of classifiers will be higher in the category which
contains a larger size of samples, and vice versa. Therefore,
in order to ensure a balanced classification ratio, we select a
total of 2,000 lossless images, including 1,000 SC images and
1,000 NS images, for verification. How to collect these images
has been illustrated in the context (seeing Section III-B).

In this paper, we adopt three indicators, namely precision,
recall and f-measure, to evaluate the performance of classifiers.
The first two indices are precision and recall:

precision =
Tp

Tp + Fp
(18)

recall =
Tp

Tp + Fn
(19)

where Tp (true positive) represents the number of samples
that the actual situation is positive and the prediction is also
positive, Fp (false positive) represents the number of samples
that the actual situation is negative but the prediction is
positive, and Fn (false negative) represents the number of
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TABLE 3: Performance on the lossless images.

Classifier type Precision Recall F-measure

Classifier-I 96.44% 95.08% 95.77%
MSCN+RF [34] 96.23% 91.62% 93.87%

LBP [52] 99.06% 97.19% 98.05%
HOG [53] 99.04% 98.83% 98.90%

TABLE 4: Performance accuracy on the lossy images.

F-measure LIVE SIQAD HSNID Overall
(779) (980) (600) (2359)

Classifier-I 91.35% 71.22% 79.09% 80.68%
Classifier-II 97.90% 94.74% 93.10% 95.72%

MSCN+RF [34] 96.68% 70.46% 79.09% 82.84%
LBP [52] 99.68% 69.42% 80.87% 84.25%
HOG [53] 99.16% 87.55% 85.87% 92.00%

F-measure Gain-I Gain-II

Classifier-I 15.04% 18.64%
MSCN+RF [34] 12.88% 15.55%

LBP [52] 11.47% 13.61%
HOG [53] 3.720% 4.043%

samples that the actual situation is positive but the prediction
is negative. The third one, f-measure, is expressed by

f-measure =
(1 + κ) ∗ precision ∗ recall
κ ∗ precision + recall

(20)

where κ is a positive variable to adjust the importance of
precision over recall. Via a harmonic mean of precision and
recall, f-measure plays a good role in combining precision and
recall. We assign κ as one in Eq. (20) for simplicity.

We employ the three indices to check the performance of
our loose classifier. Towards clear discrimination, we denote
the loose classifier of lossless images as Classifier-I and that
of lossy images as Classifier-II. The first experiment utilizes
the above-mentioned 2,000 lossless NS and SC images. We
apply the proposed Classifier-I to the 2,000 images and record
the median classification performance results across 1,000
iterations of random 80% train-20% test procedure. The results
are tabulated in Table 3. As seen, the precision, recall and
f-measure values are all greater than 95%. Furthermore, we
also introduce the MSCN+random forests (RF) [34], local
binary patterns (LBP) [52] and histogram of oriented gradient
(HOG) [53] for classification comparison. The results can be
found in Table 3 as well. The MSCN+RF’s precision value is
quite similar to the proposed Classifier-I, but in terms of other
two indices (recall and f-measure), our classifier remarkably
performs better. By comparison with LBP and HOG, which
are specifically devoted to texture classification, the proposed
simple classifier is of a little worse performance. In summary,
our Classifier-I is capable of accurately deducing the content
type of an input lossless image.

The second experiment is to examine the performance for
lossy image’s loose classification. In this experiment, the three
databases mentioned in the previous section are employed.
We apply the proposed Classifier-II to the totally 2,359 lossy

images (779 from LIVE, 980 from SIQAD, and 600 from
HSNID) and list the f-measure values in Table 4. The index of
the overall images is obtained akin to the first experiment. We
find that the proposed Classifier-II has lead to high accuracy,
with its f-measure values beyond 97% for LIVE, 93% for
SIQAD and HSNID, and 95% for the overall 2359 images.
For highlighting the necessity of introducing image search
techniques and cloud data, we further testify the performance
of the proposed Classifier-I, RF, LBP and HOG. The asso-
ciated results can be also found in Table 4. By contrast, we
can deduce that the Classifier-II performs much better than
all the four competing classifiers on overall average. We also
calculate two performance gains on overall average, as listed
in Table 4, as defined as follows:

Gain-I = V2 − V1 (21)

Gain-II =
V2 − V1
V1

× 100% (22)

where V2 and V1 are the performance values of each of four
testing classifiers and our Classifier-II. We are able to yield the
same results, namely the Classifier-II noticeably outperforms
the whole four classifiers in terms of both Gain-I and Gain-
II. Based on the two experiments above, introducing image
retrieve methods and cloud data can lead to a substantially
positive effect on loose image classification.

Furthermore, we also testify the classification performance
of Classifier-I on those images whose MOS values exceed 3
in the HSNID database. In other words, we only consider the
‘excellent’, ‘good’ and ‘fair’-quality images, overlooking the
‘poor’ and ‘bad’-quality images. The precision of Classifier-I
on those images is up to 96.77%. This implies that, as for the
images of comparatively high quality (i.e. high-bbp images),
Classifier-I can accurately identify their content types.

4.3 Quality Prediction Performance
Depending on the superior loose classifier, we propose the
UBQI model. Afterwards, we further examine its prediction
correlation performance in accordance of three typically used
indices, which include Kendall’s rank-order correlation coef-
ficient (KROCC), Spearman’s rank ordered correlation coef-
ficient (SROCC), and Pearson’s linear correlation coefficient
(PLCC). The above three indices are computed to evaluate
the correlation between the objective quality predictions and
subjective opinion values. The former two indices estimate the
monotonicity of prediction, while the last one estimates the
accuracy of prediction. Note that, when computing PLCC, the
nonlinearity existed in the objective quality estimations should
be removed based on officially provided logistic function in
advance. Here we utilize the commonly used five-parameter
function expressed by

f(q) = ζ1

(
0.5− 1

1 + eζ2(q−ζ3)

)
+ ζ4q + ζ5 (23)

where q and f(q) are the objective quality scores and its
associated mapped scores; ζi (i ∈ 1, 2, 3, 4, 5) are five free-
parameters to be fitted based on the Gauss-Newton method.
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TABLE 5: Comparison among 13 IQMs on LIVE, SIQAD and
HSNID databases. We bold the best model in each type.

LIVE (779) Type KROCC SROCC PLCC

SSIM [47] FR 0.7963 0.9479 0.9449
VSNR [54] FR 0.7624 0.9279 0.9236

VSI [55] FR 0.8058 0.9524 0.9482
PSIM [51] FR 0.8294 0.9622 0.9584
RRED [56] RR 0.7888 0.9429 0.9385
OSVP [57] RR 0.6275 0.8218 0.8201

RWQMS [58] RR 0.4864 0.6693 0.6948
RQMSC [59] RR 0.5825 0.7786 0.7815

IL-NIQE [19] NR 0.7115 0.8970 0.9020
BQMS [26] NR 0.5548 0.7496 0.7478
ASIQE [60] NR 0.5439 0.7474 0.7602
LPSI [20] NR 0.6175 0.8181 0.8280

UBQI (Pro.) NR 0.7103 0.8866 0.8951

SIQAD (980) Type KROCC SROCC PLCC

SSIM [47] FR 0.4235 0.5836 0.5912
VSNR [54] FR 0.4374 0.5693 0.5966

VSI [55] FR 0.3874 0.5381 0.5568
PSIM [51] FR 0.5393 0.7056 0.7144
RRED [56] RR 0.3984 0.5358 0.5557
OSVP [57] RR 0.4171 0.5870 0.6341

RWQMS [58] RR 0.5835 0.7815 0.8103
RQMSC [59] RR 0.5756 0.7655 0.8014

IL-NIQE [19] NR 0.1357 0.2021 0.1958
BQMS [26] NR 0.5326 0.7251 0.7575
ASIQE [60] NR 0.5609 0.7570 0.7884
LPSI [20] NR 0.2254 0.3206 0.3516

UBQI (Pro.) NR 0.5085 0.7001 0.7322

HSNID (600) Type KROCC SROCC PLCC

SSIM [47] FR 0.4590 0.6425 0.6409
VSNR [54] FR 0.3611 0.4990 0.5088

VSI [55] FR 0.5698 0.7654 0.7788
PSIM [51] FR 0.6278 0.8263 0.8261
RRED [56] RR 0.5328 0.7413 0.7279
OSVP [57] RR 0.4265 0.6167 0.6064

RWQMS [58] RR 0.5091 0.7107 0.7154
RQMSC [59] RR 0.3788 0.5446 0.5339

IL-NIQE [19] NR 0.4098 0.5788 0.7065
BQMS [26] NR 0.3553 0.5335 0.5330
ASIQE [60] NR 0.3906 0.5734 0.5912
LPSI [20] NR 0.4252 0.6014 0.6064

UBQI (Pro.) NR 0.5778 0.7816 0.7687

Given an image quality model, a value close to 1 for KROCC,
SROCC and PLCC illustrates superior performance.

The performance correlation comparison is conducted with
FR, reduced-reference (RR) and NR IQMs. Apart from the
proposed UBQI model, we dominantly consider the following
three types of 12 state-of-the-art IQMs. The first type is FR
IQMs, which include structural similarity (SSIM) [47], visual
signal-to-noise ratio (VSNR) [54], visual saliency induced
index (VSI) [55], and PSIM [51]. They supposed that the
lossless images are completely known and were proposed to
measure the distance between the lossless and lossy images.

TABLE 6: Average performance comparison among 13 IQMs.
We bold the optimal quality model in each type.

Average-II (2359) Type KROCC SROCC PLCC

SSIM [47] FR 0.5557 0.7189 0.7206
VSNR [54] FR 0.5253 0.6698 0.6823

VSI [55] FR 0.5719 0.7327 0.7425
PSIM [51] FR 0.6576 0.8210 0.8234
RRED [56] RR 0.5615 0.7225 0.7259
OSVP [57] RR 0.4890 0.6721 0.6885

RWQMS [58] RR 0.5325 0.7264 0.7480
RQMSC [59] RR 0.5278 0.7136 0.7268

IL-NIQE [19] NR 0.3956 0.5274 0.5589
BQMS [26] NR 0.4948 0.6844 0.6972
ASIQE [60] NR 0.5120 0.7071 0.7289
LPSI [20] NR 0.4057 0.5563 0.5738

UBQI (Pro.) NR 0.5928 0.7824 0.7953

The second type is RR IQMs, which are composed of reduced-
reference entropic differencing (RRED) [56], orientation se-
lectivity based visual pattern (OSVP) [57], reduced-reference
wavelet-domain quality measure of SC pictures (RWQMS)
[58], and reduced-reference quality measure of screen con-
tent pictures (RQMSC) [59]. They supposed that the partial
information of the lossless images are accessible and were
developed to calculate the difference of the lossy images from
the associated lossless versions. The last type is NR IQMs,
which include IL-NIQE [19], BQMS [26], accelerated screen
image quality evaluator (ASIQE) [60], and local pattern statis-
tics index (LPSI) [20]. They supposed that none of lossless
images can be obtained and were devised to assess the visual
quality based on statistics such as intrinsic characteristics of
undistorted images.

We illustrate the results of performance measure and com-
parison in Tables 5-7. As seen, four conclusions are derived.

1) The proposed UBQI model has attained very encourag-
ing performance. In terms of SROCC, its performance
approximates 0.9 on the LIVE database, surpasses 0.7
on the SIQAD database, and is close to 0.8 on the new
HSNID database.

2) By comparison with relevant IQMs, our UBQI method
also exhibits high performance. For conveniences, we
highlight the optimal image quality model based on the
SROCC index in each type. It can be found that, on
the LIVE and SIQAD databases, the performance of the
proposed model is near to the optimal NR IQM. On the
novel HSNID database, our UBQI model is remarkably
superior to the best performing FR and RR IQMs, and
even close to the state-of-the-art FR PSIM method.

3) A comprehensive comparison is carried out as well to
validate the superiority of our proposed UBQI method.
Here we introduce the data size-weighted average, de-
fined as follows:

Average-II =

∑3
i=1 %i · πi∑3
i=1 πi

(24)

where %1, %2, %3 are the performance indices for each of
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TABLE 7: Performance comparison of the UBQI model with
different classifiers.

LIVE (779) KROCC SROCC PLCC

UBQI-NS 0.7164 0.8916 0.9007
UBQI-SC 0.5548 0.7496 0.7478

UBQI-Classifier-I 0.6907 0.8722 0.8729
UBQI-Classifier-II 0.7103 0.8866 0.8951

UBQI-RF 0.7113 0.8898 0.8959
UBQI-LBP 0.7154 0.8909 0.8998
UBQI-HOG 0.7095 0.8855 0.8915

SIQAD (980) KROCC SROCC PLCC

UBQI-NS 0.0944 0.1368 0.1532
UBQI-SC 0.5326 0.7251 0.7575

UBQI-Classifier-I 0.3418 0.4930 0.5390
UBQI-Classifier-II 0.5085 0.7001 0.7322

UBQI-RF 0.3633 0.5212 0.5706
UBQI-LBP 0.3340 0.4766 0.5486
UBQI-HOG 0.4556 0.6372 0.6758

HSNID (600) KROCC SROCC PLCC

UBQI-NS 0.3862 0.5484 0.6199
UBQI-SC 0.3553 0.5335 0.5330

UBQI-Classifier-I 0.5477 0.7521 0.7429
UBQI-Classifier-II 0.5778 0.7816 0.7687

UBQI-RF 0.5477 0.7521 0.6577
UBQI-LBP 0.5535 0.7506 0.7456
UBQI-HOG 0.5607 0.7639 0.7545

Average-II (2359) KROCC SROCC PLCC

UBQI-NS 0.3740 0.4908 0.5187
UBQI-SC 0.4948 0.6844 0.6972

UBQI-Classifier-I 0.5094 0.6841 0.7011
UBQI-Classifier-II 0.5928 0.7824 0.7953

UBQI-RF 0.5251 0.7017 0.7002
UBQI-LBP 0.5158 0.6831 0.7147
UBQI-HOG 0.5662 0.7514 0.7671

three databases; π1, π2, π3 are assigned as the number
of images in each database, i.e. 779 for LIVE, 980 for
SIQAD and 600 for HSNID. One can readily observe
from Table 6 that, in accordance to this average index,
the proposed blind UBQI model has achieved the much
higher performance than the same type of state-of-the-
art NR IQMs and prevailing RR IQMs. Particularly, even
compared with the recently devised FR PSIM model, our
quality model shows the comparable performance.

4) Notice that the proposed UBQI model depends on the
Classifier-II, which can well work under the conditions
of lossless and lossy image content inference. It is nat-
ural to compare the performance of inserting difference
classifiers into the UBQI model. As illustrated in Table
7, we report the correlation performance among four
IQMs: UBQI-NS supposes that all the images are natural
scene type; UBQI-SC supposes that all the images are
screen content type; UBQI-Classifier-I applies the loose
classifier of lossless images; UBQI-Classifier-II applies
the loose classifier of lossy images; UBQI-RF applies the
RF-based classifier; UBQI-LBP applies the LBP-based

classifier; UBQI-HOG applies the HOG-based classifier.
We can find that the UBQI-Classifier-II, namely the
proposed UBQI model, has lead to considerably good
performance on the three testing databases, particularly
exceeding the others on the new HSNID database and
average performance. In addition, it can be viewed that
the loose classifier of lossless images also leads to a
large performance boost as compared to UBQI-NS and
UBQI-SC, even though it does not take the influence of
distortions on classification of content type into account.
That is to say, an effective classifier is highly required
for building a unified blind image quality metric.

Further, the scatter plots of MOS versus eight testing IQMs
on the HSNID database are displayed in Fig. 6 for a visual
comparison. RR IQMs (including OSVP, RWQMS, RQMSC),
and NR IQMs (including IL-NIQE, BQMS, ASIQE, LPSI)
are used for the comparison with the proposed UBQI. We use
various colors to label the sampling points associated with
different image types in each scatter plot: Red sampling points
refer to natural scene images, and blue sampling points refer
to screen content images. As shown in Fig. 6, the scatter plot
illustrate that, as compared to other metrics, both the red and
blue sampling points of UBQI are more densely closed to
each other. That is to say, the proposed UBQI metric has a
greater performance in the evaluation of both NS images and
SC images. Moreover, it is more stable than other algorithms
involved in the comparison.

Along the research line of this work, the concept of big data
can promote the study of quality prediction from the following
two aspects. First, the high-performance full-reference quality
methods can be used via weak supervision learning to label
a huge number of distorted image samples for training more
robust NR IQMs [6]. Second, we can establish some statistics
models based on a large quantity of instances as the ‘standard’,
followed by measuring the deviation of a new image with the
‘standard’ to be the quality index [61].

5 CONCLUSIONS
In this paper, we have specifically developed a unified NR
IQM, not only applied to various distortion types and inten-
sities but also to different image contents including classical
NS images and prevailing SC images. Previous image quality
models are only devoted to the study of one of the natural
scene images or screen content images. Our proposed NR
UBQI model implements by: 1) extracting features based on
the scene statistical model, free energy brain principle and
HVS characteristics; 2) inferring the content type of the input
image; 3) predicting the visual quality of the image. In the
last two steps, we introduce two data-driven learning processes
based on on-line and off-line training instances. Via sufficient
experiments, it is proved that the proposed blind IQM can
simultaneously infer the quality of different types of images,
and has acquired high performance and good stability in the
quality assessment of both NS images and SC images.
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