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ABSTRACT 

In the research of image quality assessment (lQA), no­
reference approaches are usually thought of as a big challenge 
since none of original image information is available. To tack­
le this problem, we propose a new no-reference image quali­
ty metric through combining two recently proposed reduced­

reference IQA models, namely the free energy based distor­
tion metric (FEDM) and the structural degradation model (S­
DM). In this work, it will be shown that there exists an ap­
proximate linear relationship between the original image in­
formation of the free energy feature and the structural degra­
dation information. Based on this observation and the appli­
cation of support vector machine (SVM) that is widely used in 
the current study of IQA, our newly developed No-reference 
Free energy and Structural degradation based Distortion Met­
ric (NFSDM) is found to alleviate the dependance of original 
images, and has achieved remarkably well prediction accura­
cy, outperforming the most two full-reference IQA approach­
es PSNR/SSIM and several mainstream no-reference image 
quality metrics. 

Index Terms- Image quality assessment (lQA), no­

reference (NR), free energy, structural degradation, human 
visual system (HVS) 

1. INTRODUCTION 

The task of image quality assessment (IQA), mainly consist­
ing of subjective and objective assessment, is an important re­

search area in digital image processing. Although the subjec­
tive assessment method should be the terminal quality criteri­
on, it is very expensive, time-consuming, and not practical for 
real-time image processing systems. As a result, an increasing 

number of researchers have devoted to objective IQA metrics 
during the last decade. Following the tremendous achieve­
ment of SSIM [1], it has been acknowledged that structural 
information plays a significant role in the research of IQA. 
Since then, many improved SSIM-type of IQA metrics have 
been developed and obtained higher prediction performance 

as full-reference (FR) IQA metrics, such as MS-SSIM [2], 
IW-SSIM [3], SNW-SSIM [4], SC-SSIM [5] and DIP [6]. 

Nowadays, the study of no-reference (NR) IQA algo­
rithms is in the stage of booming evolution. Generally speak­
ing, there are two types of NR image quality metrics. The first 

type of no-reference methods aim to detect some specific ar­
tifacts. In the earlier attempts of IQA approaches, a blind blur 
metric [7] was proposed based on the analysis of the spread 
of the edges in image. For JPEG compression, Wang et al 
[8] developed a method through measuring blocking effect­

s and relative blur that contains average absolute difference 
between in-block image samples and zero-crossing rate. Re­
cently, the scale invariant based noise estimator (SINE) [9] 
was exploited for white noise injection. 

The second type of no-reference approaches depend on 
some features extracted by statistic models (e.g. natural scene 
statistics (NSS) model) in transform domains. For example, 
Sheikh et al [iO] employed the NSS model to assess the qual­
ity of JPEG2000 compressed images. Later, BLind Image In­
tegrity Notator using DCT Statistics (BLIINDS-II) [11] was 
developed using the NSS model for DCT coefficients. In ad­
dition, wavelet transform domain-based Blind Image Quality 

Indices (BIQI) [12] and Distortion Identification-based Image 
Verity and INtegrity Evaluation (DIIVINE) [13] also relied 
on the NSS model. All of those methods conform to a two­
stage framework, namely distortion identification followed by 
distortion-specific quality assessment. 

Besides above-mentioned two types of NR methods, re­
cently proposed no-reference free energy based quality metric 
(NFEQM) [14] belongs to a novel type of no-reference IQA 

algorithm. NFEQM was designed by resorting to psychovisu­
al theories of the human visual system (HVS), and was shown 
to be able to accurately assess the qualities of images that are 
distorted by Gaussian blur or white noise injection. 

In this paper, we will explore a new group of image fea­
tures for NR IQA, by combining the structural degradation in­
formation and the free energy feature. In the structural degra­
dation model (SDM) [15], structural degradation information 
was proposed based on an observation, which tells that im­
ages with various distortion types and quality levels, when 
being post-processed by low-pass filtering, will have differ­
ent degrees of loss in spatial frequency. The free energy de-



fined in [14] can be estimated by measuring the gap between a 
viewing scene and the corresponding brain's prediction using 
the internal generative model. In our research, it was noticed 
that structural degradation information is closely related to 
the free energy. More specifically, the structural degradation 
and free energy has a proximate linear relationship for orig­

inal images. Considering the fact that the reduced-reference 
SDM and FEDM metrics are based on highly correlated im­
age features, we believe their partial information for the orig­

inal image can be alleviated, and the integration of structural 

degradation information and free energy feature are capable 

of predicting the image quality in the no-reference condition. 
And meanwhile, inspired by mainstream NR methods, such 
as BLIINDS-II [11] and DIIVINE [13], we also take the sup­
port vector machine (SVM) [16] in account. Accordingly, this 
paper proposes a new No-reference Free energy and Struc­
tural degradation Distortion Metric (NFSDM). 

The rest of this paper is organized as follows. Section 2 
first presents the definition of extracted features of free energy 
and structural degradation information. Then, by combining 
both of them, we propose the NFSDM algorithm. In Section 
3, experimental results using the LIVE database [17] are re­
ported and analyzed. Finally, Section 4 concludes this paper. 

2. THE PREDICTION MODEL 

Generally, the state of the art NR image quality metrics make 
use of extracted features in transform domains. However, 
we found that the structural degradation information and free 

energy theory can offer another group of effective features. 
Thus, this paper develops the framework of the proposed N­
FSDM metric by a nonlinear combination of two parts of fea­
tures, free energy and structural degradation information, as 
illustrated in Fig. 1. 

2. 1. Free energy feature 

The underlying idea of FEDM metric [14] is mainly based 
on the free energy principle, which is proposed by Friston 
[18]-[19] to explain and unify several brain theories in bio­
logical and physical sciences about human action, perception 

and learning. Nearly to the Bayesian brain hypothesis, a basic 
premise of the free energy based brain theory is that the cog­
nitive process is manipulated by an internal generative model. 
Using the generative model, human brain renders predictions 
of those encountered scenes in a constructive manner. 

This constructive model is a probabilistic model in essen­
tial, which can decompose into a likelihood term and a prior 
term. Then, visual perception is the process of inverting this 
likelihood term so as to infer the posterior possibilities of the 

given scene. Not surprisingly, there always exists a gap be­
tween the encountered scene and brain's prediction, due to 
the fact that the internal generative model cannot be univer­
sal. The gap between the external input and its generative-
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Fig. 1. The primary framework of the proposed NFSDM al­

gorithm. 

model-explainable part can be directly related to the quality 
of perceptions, and therefore measures the image quality. 

For operational amenability, it is assumed that the inter­
nal generative model Q for visual perception is parametric, 

which explains perceived scenes by adjusting the vector () of 
parameters. Given an image, its 'surprise' (determined by en­
tropy) can be evaluated by integrating the joint distribution 

P(I, ()IQ) over the space of model parameters () 

-log P(IIQ) = -log J P(I, ()IQ)d(). (1) 

By introducing an auxiliary term Q(()II) into both the denom­
inator and numerator in Eq. (1) and it can be rewritten as 

J P(I,()IQ) 
-log P(IIQ) = -log Q(()II) 

Q(()II) d(). (2) 
Then, through using Jensens inequality, it can be obtained 
from Eq. (2): j. P(I ()) 

-log P(IIQ) � -log Q(()II) 
Q(()'II) 

d(), (3) 

and the right hand side, as the definition of free energy: 

J P(I,()) 
J(()) = -log Q(()II) 

Q(()II) 
d(). (4) 

Finally, the free energy feature of a distorted image Y can 

be defined as J(Oy) with Oy = arg min J(()IQ, Y). More 
details can be found in [14]. 

2.2. Structural degradation information 

In our previous work [15], it was noticed that for most im­
ages with various distortion categories and quality ranks, their 
blurred version that is processed by low-pass filtering will 

have different degrees of spatial frequency decrease. This ob­
servation reveals one big shortcoming of SSIM, which lacks 
of adequate ability to distinguish different distortion types and 
quality levels. So, an improved structural degradation infor­
mation is developed as follows. 



Referring to the definitions of fLY and O"y in SSIM, we 
redefine fLY (d) and O"y (d) for simulating Gaussian low-pass 
filters with different coefficients: 

O"y(d) = 
2:!1 2:;=1 Wij(Yij -fLY (d))2 

N2-1 
(5) 

with w = {Wij Ii, j 1, . . .  , N}, satisfying Sum(w) = 1 
and Var(w) = d (Sume) and Vare) are used to compute 
the sum and variance values independently). 

Then, by selecting different variance d (= 0.1 and 1.5), the 
degrees of spatial frequency decrease for a distorted image Y 
can be estimated as structural degradation information: 

(6) 

where 0"(O"YlO"Y2) refers to the definition of O"(AB): 

and 

fLY1 = fLy(d = 0.1) fLY2 = fLy(d = 1.5) 
O"Yl = O"y(d = 0.1) O"Y2 = O"y(d = 1.5) (8) 

and t = {i, e} for interior parts or exterior parts of blocks. As 
can be seen from Fig. 2, for a block with the size of 8 x 8, 
the dark gray part are the exterior part, while the middle part 
colored with light gray are the interior part. 
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Fig. 2. Illustration of interior parts or exterior parts of blocks. 
For a block with the size of 8 x 8, the dark gray part are the 
exterior part, while the middle part colored with light gray are 
the interior part. 

2.3. SVM based nonlinear combination 

To better explain why the information of original images can 
be eliminated, we still need to define the free energy and 
structural degradation information of an original image X 
as J(Ox) (with Ox = arg min J(019, X» and SDs,t,N(X) 
(with s = {me,ms,vs}) according to Eq. (4), (6). We then 
compare the results of free energy and structural degradation 

information for original images. Fig. 3 illustrates there ex­

ists an approximate linear relationship between J (0 x ) and 

SDs,t,N(X), and Table 1 presents a group of approximate 
values satisfying 

(9) 

which can provide a possible opportunity to avoid original im­
age information through using an effectively nonlinear com­
bination. 

Table 1. Different groups of a and f3 values approximating the 

linear relationship between J(Ox) and SDs.t,N (X). 
SDmc,t,N(X) SDms,t,N(X) SDvs,t,N(X) 

a -8.994 -9.643 -4.416 

f3 11.88 12.34 6.700 

Enlightened by recently proposed no-reference methods 
(BLIINDS-II and DIIVINE) that have powerful performance 
in predicting image quality scores, it has become a main­
stream methodology to make use of SVM for regression. It 

is well-known that SVM performs well in high-dimensional 
spaces. And moreover, it can validly avoid over-fitting and 

have good generalization capabilities. So this paper adopts 
SVM to train the chosen features and predict quality scores 
for all the distortions. The total number of features used in 

our work is 55, mainly consisting of two groups. The first 
group includes only one, namely free energy values of dis­
torted images. The other gourd involves 54 features, which 
can be easily obtained. Considering the fact that the scale 
factor has important effects on the study of IQA, such as MS­

SSIM [2] and SAST [20], we also takes into account various 
scales by introducing scale factor j = 2,4,8,16 for interior 
parts and j = 2,4 for exterior parts. In general, the energy 
recited by human eyes has a lower bound. When the local 
region is very complicated, different sizes of windows used 
to generate Gaussian blur filters should be applied, i.e., we 

set N = 3,7,11 in Eq. 5. Here, we still condenser using 

SDs,t,N,J(Y) = J(Oy) - (as' SDs,t,N,J(Y) + f3s) to alle­
viate as much original information as possible. In summary, 
the selected features are shown as follows: 

with Oy = argminJ(019, Y) 
SDs,i,N,J(Y) with s={me,ms,vs}, 

N={3,7,11},j={2,4,8,16} . (10) 

SDs,e,N,J(Y) with s= {me, ms, vs}, 
N={3, 7, 11},j={2,4} 
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Fig. 3. Scatter plots of J(iJx) vs. SDs,t,N,J(X) (8 = 
{me, ms, VS}, t = {i, e}, N = 11, f = 2) for 29 original im­
ages in LIVE database. The (red) lines are the fitted straight 
lines and the (black) dash lines are 95% confidence intervals. 

Note, the relationship of objective results versus subjec­
tive scores are completely different between images of white 
noise and other distortion categories, such as FEDM and SD­
M. To illustrate, the higher-quality white noise images have 
larger FEDM or SDM values, while other distortion cate­
gories of images with lower quality correspond to smaller 

FEDM or SDM results. Consequently, the Si\,t,N,J(Y) is 
further modified as follows: 

SDs t N (Y) = { =!...Ds,t,N,J(Y) 
" ,J 

SD (Y) s,t,N,J 
if J(Oy) > 5 

otherwise 
(11) 

We then employ SVM to train the 55 features in terms of d­
ifferential mean opinion scores (DMOSs). In this work, the 
LIVE database [17], consisting of 29 reference images and 
779 distorted images, is utilized as the testing bed for verify 

the performance of our NFSDM metric. Similar to the usual 

training method, the training set contains about 80% of the 
reference images and their corresponding distorted version­
s, while the testing set consists of the rest 20% of the refer­
ence images and their associated distorted images. In order 
to ensure that the proposed approach is robust across content 
and is not governed by the specific train-test split, this paper 
reuses this random 80% train - 20% test split 1000 times on 

the LIVE dataset, and evaluate the performance on each of 
these test sets. 

3. EXPERIMENTAL RESULTS 

Three commonly used performance metrics, Pearson Linear 
Correlation Coefficient (PLCC), Spearman Rank-Order Cor­
relation Coefficient (SROCC) and Root Mean-Squared Error 
(RMSE) as suggested by VQEG [21], are employed to further 
evaluate our superior NFSDM algorithm and the other nine 

methods, namely PSNR, SSIM, Pina [7], Wang [8], SINE [9], 

Sheikh [10], NFEQM [14], BLIINDS-II, and DIIVINE on the 
LIVE database. First of all, Fig. 4 shows the scatter plots of 
DMOS versus the best performance of NFSDM on five dif­
ferent data sets of distortion categories and the whole LIVE 
database. 

Secondly, Table 2 compares the overall performance of 
all the aforementioned NR image quality metrics. Obviously, 

Table 2. Pearson Linear Correlation Coefficient (PLCC), Spear­

man Rank-Order Correlation Coefficient (SROCC), and Root Mean­

Squared Error (RMSE) values (after nonlinear regression) of PSNR, 

SSIM, BLIINOS-II, OlIVINE, and the proposed NFSOM method 

(NFSOM (m) and NFSOM (0) are the median value and the optimal 

value across 1000 times training) on the whole LIVE database (779 

images). 

Algorithm PLCC SROCC RMSE 

PSNR 0,8701 0,8755 13.475 

SSIM 0,9014 0,9103 13.475 

BLIINOS-II 0.9144 0.9115 11.834 

OlIVINE 0,8443 0,8560 14.649 

NFSOM (m) 0,9237 0,9224 10.466 

NFSOM (0) 0.9278 0.9270 10.194 

Table 3. Pearson Linear Correlation Coefficient (PLCC) values (af­

ter nonlinear regression) of PSNR, SSIM, Pina [7], Wang [8], SINE 

[9], Sheikh [10], NFEQM [14], BLlINOS-lI, OlIVINE and the pro­

posed NFSOM method (NFSOM (m) and NFSOM (0) are the me­

dian value and the optimal value across 1000 times training) on five 

various distortion types of data sets. 

Pearson Linear Correlation Coefficient (PLCC) 

Algorithm JP2K JPEG WN Gblur FF 

PSNR 0,8996 0,8878 0,9860 0,7834 0,8895 

SSIM 0.9410 0.9504 0.9697 0.8743 0.9428 

Pina [7] - - - 0,9194 -
Wang [8] - 0,9201 - - -
SINE [9] - - 0.9760 - -
Sheikh [10] 0.9628 - - - -
NFEQM [14] - - 0,9712 0,8921 -
BLIINOS-II 0.9352 0.9471 0.9653 0.9175 0.8453 

OlIVINE 0.9267 0.8041 0.9914 0.9600 0.8741 

NFSOM (m) 0.9550 0,9592 0,9352 0,9449 0,8480 

NFSOM (0) 0.9639 0.9655 0.9305 0.9456 0.8575 



Table 4. Spearman Rank-Order Correlation Coefficient (SROCC) 

values (after nonlinear regression) of PSNR, SSIM, Pina [7], Wang 

[8], SINE [9], Sheikh [10], NFEQM [14], BLIINOS-II, OlIVINE 

and the proposed NFSOM method (NFSOM (m) and NFSOM (0) are 

the median value and the optimal value across 1000 times training) 

on five various distortion types of data sets. 

Spearman Rank-Order Correlation Coefficient (SROCC) 

Algorithm JP2K JPEG WN Gblur FF 

PSNR 0.8954 0.8809 0.9857 0.7823 0.8907 

SSIM 0.9355 0.9449 0.9625 0.8944 0.94l3 

Pina [7] - - - 0.9015 -
Wang [8] - 0.9l30 - - -
SINE [9] - - 0.9814 - -
Sheikh [10] 0.9628 - - - -
NFEQM [14] - - 0.9691 0.8845 -
BLIINOS-II 0.9299 0.9471 0.9594 0.9103 0.8348 

OlIVINE 0.9185 0.8141 0.9878 0.9581 0.8586 

NFSOM (m) 0.9506 0.9481 0.9265 0.9347 0.8205 

NFSOM (0) 0.9592 0.9546 0.9172 0.9336 0.8291 

Table S. Root Mean-Squared Error (RMSE) values (after nonlinear 

regression) of PSNR, SSIM, Pina [7], Wang [8], SINE [9], Sheikh 

[10], NFEQM [14], BLIINOS-II, OlIVINE and the proposed NFS­

OM method (NFSOM (m) and NFSOM (0) are the median value and 

the optimal value across 1000 times training) on five various distor­

tion categories of data sets. 

Root Mean-Squared Error (RMSE) 

Algorithm JP2K JPEG WN Gblur FF 

PSNR 1l.018 14.656 4.6660 1l.479 13.015 

SSIM 8.5349 9.9070 6.8453 8.9643 9.4963 

Pina [7] - - - 7.2666 -
Wang [8] - 9.8804 - - -
SINE [9] - - 5.6372 - -
Sheikh [10] 8.6076 - - - -
NFEQM [14] - - 6.6793 8.3448 -
BLIINOS-II 8.9341 10.221 7.3153 7.3470 15.218 

OlIVINE 9.4794 18.934 3.6656 5.1691 13.837 

NFSOM (m) 7.4864 9.0050 9.9063 6.0445 15.098 

NFSOM (0) 6.7188 8.3001 10.245 6.0118 14.657 

the proposed NFSDM paradigm has achieved better results, 
as compared to the mainstream no-reference IQA algorithms 
(BLIINDS-II and DIIVINE), and the most two popular full­
reference IQA methods (PSNR and SSIM). Besides, the per­
formance of ten no-reference methods on each image dataset 
of five distortion types, including JPEG2000, JPEG, white 
noise, Gaussian blur, and fast-fading, is tabulated in Table 3-
5. It can be found that our method also attains exciting results 

for every specific category of image distortion. For exam­
ple, Table 3-5 present that, for JPEG/white noise images, the 
prediction accuracy of the proposed NFSDM can be compara­
ble as that of Sheikh/SINE, the popular no-reference metrics 
for specific distortion type. And moreover, our algorithm has 

attained much better results than Pina/Wang/NFEQM when 

assessing quality of Gaussian blur/JPEG2000 images. 

4. CONCLUSION 

In this paper, we develop a novel no-reference IQA ap­
proaches NFSDM by combining features of free energy and 
structural degradation information. Experimental results on 

the LIVE database verified its remarkably well performance. 

First, the proposed SVM based NFSDM metric is trained for 
all the distortion, and it has been proved that its overall predic­
tion accuracy is better than the mainstream no-reference IQA 

algorithms, such as BLIINDS-II and DIIVINE, and the most 
two popular full-reference PSNR and SSIM methods. Sec­
ond, our method has also achieved inspiring results for each 
conunonly specific distortion category, and can be applied to 

replace the classical artifact-detection based NR methods. 

Besides, it needs to emphasize that our paradigm success­
fully constructs a bridge between the newly proposed free en­
ergy theory and early exploited structural information (struc­

tural degradation information is virtually a kind of modified 
structural information), so as to indicate a new direction for 
further comprehension of the behavior of HVS and of re­
searches on image quality assessment. 
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