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ABSTRACT Extracting stable features to enhance object representation has proved to be very effective
in improving the performance of object tracking. To achieve this, mining techniques, such as K -means
clustering and data associating, are often adopted. However, K -means clustering needs the pre-set number of
clusters. Real scenarios (heavy occlusion and so on) often make the tracker lose the target object. To handle
these problems, we propose an intraframe clustering and interframe association (ICIA)-based stable feature
mining algorithm for object tracking. The value (in HSV space) peak contour is employed to automatically
estimate the number of clusters and classify value and saturation colors of the object region to get connected
subregions. Every subregion is described with observation and increment models. Multi-feature distances-
based subregion association, between the current object template and the current observation, is then utilized
to mine stable subregion pairs and obtain feature change ratio. Stable subregion displacements, and current
detected and historical trajectories are systematically fused to locate the object. And, stable and unstable
subregion features are updated separately to restrain the accumulative error. Experimental comparisons are
conducted on six test sequences. Compared with several relevant state-of-the-art algorithms, the proposed
ICIA tracker most accurately locates objects in four sequences and shows the second-best performance in
the other two sequences with only less 1 pixel distance difference than the best method.

INDEX TERMS Object tracking, stable features mining, intraframe clustering, interframe association,
observation and increment models, template update.

I. INTRODUCTION
Visual tracking is a hard problem as many different and vary-
ing circumstances need to be reconciled in one algorithm [1].
Modeling the object with sparse and reliable features to
increase object representation efficiency is a significant and
challenging issue in object tracking [2]–[4], and also widely
facilitates numerous other computer vision applications such
as action retrieval [5] and recognition [6], [7]. Nonetheless,
object features often vary along with object posture and
resolution variations, occlusion and background clutters [8]
etc in real-world conditions, which makes the current object
observation depart from the predetermined object model.
Recently, evolving the appearance model is widely adopted

so as to adapt to changing imaging conditions. However,
appearance model adaptation introduces several challenges,
such as simultaneously fulfilling the contradicting goals of
rapid learning and stable memory (referred to as the stabil-
ity/plasticity dilemma) [9]. A target object may bemissed due
to the wrong observation and the model drift [10] problems
during detecting, recognizing and tracking, and this ulti-
mately degrades the accurateness of real applications such as
intelligent traffic surveillance [11], image understanding [12]
and UAV (Unmanned Aerial Vehicle) navigation [13]. The
tracker is further challenged by heavy or total occlusion, sim-
ilar color disturbance, blurry and ambiguous object appear-
ance, fast movement and rotation etc. Therefore, efficiently
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modeling and tracking objects to improve the robustness,
accurateness and real-time performance of the tracker are
still an open problem attracting a broad range of researchers’
attention.

To cope with these difficulties, a number of algorithms
have been established to endow the object model with
strong discriminative power, such as kernel [14], [15] and
mask [16] color histograms, color correlogram [2],
spatio-temporal [17]–[19] and edge-color [3] appearance
contexts, context-aware object model [20]–[22], correlation
filter model [23], [24], local dynamic sparse model [4], [25],
centroid [26], block or patch [27], [28], structure [29], [30],
shape [31] and linear combination of basis samples [32]
based object feature representations. Among of them, image
and video data mining based feature extracting algorithms
[20]–[22], [33] play a more critical role towards obtaining
remarkable results.

Image mining can acquire the implicit knowledge, image
data relationship or other patterns not explicitly stored in the
object image [12], [34]. Clustering, as one of the unsuper-
vised image mining techniques, can dispatch the heteroge-
neous data into different groups [35], [36] or mine visual
patterns according to the image content without the priori
knowledge [22], [37], [38]. As thus, clustering is very useful
in finding the block-level features on the object appearance by
grouping unlabeled raw images into meaningful classes, and
vital in getting the object observation even though the observ-
able information is incomplete or ambiguous under the cases
of occlusion and blurry object appearance. K-Means clus-
tering is good at highlighting the main color or texture fea-
tures etc and serving dimensionality reduction on the original
data [39], but it needs the pre-set number of clusters.
Plant et al. [12] utilized the interaction K-Means (IKM) to
cluster the functional magnetic resonance image with the
pre-set number of clusters for brain function understanding.
Wang et al. [21] presented a regularizedK-Means formulation
where spatial co-occurrences as constraints are added to the
conventional K-Means clustering to improve the pattern dis-
covery results. Li [40] proposed a color model based on the
K-Means clustering to automatically divide the color space
of the object and get the histogram bins. Likewise, [33],
[41], [42] also adopted the true or pre-set number of clusters.
To adaptively acquire the number of clusters, Pelleg and
Moore [43] extended K-Means with efficient estimation of
the number of clusters. Kuncheva and Vetrov [44] studied the
relationship between stability and accuracy with respect to
the number of clusters, and presented that this relationship
strongly depends on the data set. They further used the sta-
bility measures to select the number of clusters based on the
hypothesis of a point of stability of a clustering algorithm
corresponding to a structure found in the data. In [45], the
number of clusters was adjusted dynamically to arrive at the
correct number of clusters even when the number of clusters
in the first frame is not correctly chosen.

Video mining can extract the moving object features, spa-
tial or temporal correlations of those features [2]. When

an object encounters occlusion, similar feature disturbance,
ambiguous appearance, fast movement or rotation etc, these
correlations are especially helpful in determining stable fea-
tures and correcting the ambiguous observation. Video min-
ing is widely used for discovering the object activity and
event [11], [46], and tracking the object [20], [47], [48]
etc without any assumption about video contents. Associa-
tion [49] as an important video mining method can obtain
related information or discover two features or objects that
always occur simultaneously etc. Yang et al. [20] discov-
ered auxiliary objects, i.e. a set of color regions which were
temporally stable and spatially correlated to the target object
in a video sequence, by learning their co-occurrence asso-
ciations and estimating affine motion models in an unsu-
pervised way. Next these auxiliary observations were fused
to track the target object whose current observation was
unreliable due to occlusion or background disturbance etc.
Grabner et al. [47] mined supporters which were tempo-
rally but useful for tracking the object from the embedded
context and dealing with the occlusion in real scenarios.
Quan et al. [48] proposed a collaboration model in which
the acceleration difference between two objects was used
to calculate the motion correlation value based on the two-
dimensional Gaussian function and the location of occluded
target was estimated using the motion information from other
objects. Zhang et al. [11] learned and mined the object-
specific context and the scene-specific context informations
to improve the robustness of objects (pedestrians and vehi-
cles) classification and objects tracking based abnormal event
detection. Wang and Yagi [50] selected reliable features from
color and shape-texture cues according to their descriptive
ability and extended the standard mean-shift tracking algo-
rithm. Yang et al. [51] exploited the temporal consistency
for visual tracking and incorporated the temporal consis-
tency into the multi-graph learning framework to effectively
improve the robustness of the tracker.

Nevertheless, a tracker may be good at handling several
kinds of circumstances (such as appearance changes induced
by different viewpoints), but may be hard to deal with other
situations (such as accelerant movement) [1]. So there is still
a long way to achieve accurately and robustly object tracking
under general scenes.

In this paper, we focus on mining stable object features
to elevate the performance of object tracking under the sce-
narios of heavy occlusion and multiple times occlusions,
similar color disturbance and ambiguous appearance, and
rapid movement along with scale and posture changes, etc,
and hereby present an intraframe clustering and interframe
association (ICIA) algorithm. A cluster number is real-time
estimated according to the peak contour of V (value) compo-
nent, and input to K-Means algorithm to classify the S (satu-
ration) and V colors (in HSV space) of the object region. The
connection subregions of every cluster are then represented
with the observationmodel and the increment model. Tomine
stable subregions, we associate the subregion observations
with the current object template in terms of the multi-feature
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distances and change ratios, and utilize the increment model
to get the feature variations for further robustly updating the
object template. The object trajectory in the current frame is
located by weighted fusing the center displacements of stable
subregions, and current detected and historical trajectories.
We perform comparative experiments with the classicalMean
Shift (MS) tracker [14], as well as state-of-the-art Kernel-
ized Correlation Filter (KCF) [24], spatio-temporal context
(STC) [17] and structure complexity coefficients (SCC) [29]
based trackers. Experimental results indicate that the pro-
posed method can continuously mine stable subregions and
robustly track the object under unconstrained scenarios.

The remainder of this paper is organized as follows.
Section 2 introduces the overview of the proposed method.
Section 3 proposes the number of clusters estimating and
intraframe classifying algorithm. Section 4 describes the
subregion modeling and stable feature mining algorithm.
Section 5 gives the object tracking and template updating
algorithm. Section 6 presents experiments and associated
results, and performance comparisons. Finally some conclu-
sion and discussion are presented in Section 7.

II. OVERVIEW OF THE PROPOSED ALGORITHM
In video based automatic object recognition and tracking, the
motion region containing a moving object is often extracted
to decrease the searching cost and restrain background distur-
bance etc. Similarly, the adaptive background difference here
is firstly employed to extract the region ofmoving object. And
then we utilize the peak contour of V component histogram in
the object region to estimate the number of clusters and adopt
K-Means algorithm to classify the S and V colors of moving
pixels. The 8-connection subregions of every cluster are fur-
ther computed and described with the observation model and
the increment model. Furthermore, the subregion association
between the current observation model and the current object
template is used to mine the stable subregion pairs and get
the feature change ratios. Finally, the center displacements of
the stable subregions, the current detected object trajectory
xdet ectt and historical trajectories xt−1 are weighted combined
to derive the object displacement and the trajectory xt in the
current frame. The stable and unstable subregion features in
the object template are updated individually to restrain the
accumulative error and adapt to gradual variations in object
location, posture, scale, color and illumination etc. The flow
chart of the proposed ICIA based stable feature mining for
object tracking algorithm is shown in Fig. 1, where every sub-
region center position is marked with the ‘+’ (plus) character
and the round mark denotes the tracked object trajectory in
frame t.
In comparison to previous works, such as [12], [14], [17],

[21], [24], [29], [40], three main contributions of this paper
are summarized below: 1) we establish a novel ICIA based
stable feature mining and object tracking framework by auto-
matically estimating the number of clusters, modeling subre-
gions, mining stable subregions and employing stable feature
pairs to derive object trajectory. 2) we develop a dynamic

FIGURE 1. The flow chart of the proposed algorithm.

and local stable feature model and update scheme, which are
more efficient than the global feature model and the uniform
segmentation based feature model in handling heavy occlu-
sion accompanied with similar color disturbance, ambigu-
ous appearance or clutter background, and fast movement
along with scale or posture changes etc. 3) our tracker per-
forms better than the classical kernel color histogram based
MS [14], and recently developed KCF [24], STC [17] and
SCC [29] trackers on relevant image databases. Compared
with the previous works, to the best of our knowledge, this
paper is the first to propose the automatically clustering based
connection subregion modeling, and subregion associating
based stable feature mining and tracking framework. And
furthermore, the proposed ICIA algorithm has acquired a
substantially high performance.

III. THE NUMBER OF CLUSTERS ESTIMATING AND
INTRAFRAME CLUSTERING
A. ESTIMATING THE NUMBER OF CLUSTERS
Due to S and V components are independent of color infor-
mation and much easier for processing than that in RGB
color space, we use them to cluster the object appear-
ance. To promote clustering adaptivity and efficiency, and
restrain the background disturbance, we estimate the num-
ber of clusters according to the color feature of mov-
ing pixels and only cluster the motion region of the
object. Here, we mainly deal with the object tracking
under the stationary camera and detect the object region
with the background difference algorithm [52]. The effec-
tiveness of background suppression in object tracking has
been illustrated in [16] and [26]. Beyan and Temizel [16]
modeled the object with motion mask based kernel color
histogram and located the individual object with MS in the
case of multi-object merging, which effectively depressed the
track drift. Lee and Kang [26] proposed a background feature
elimination algorithm using the level set based bimodal seg-
mentation to increase the robustness of object tracking. The
background difference, with an adaptive threshold computed
with iteration algorithm [53], here is adopted to obtain the
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binary motion region Rt (x). It is very important in dealing
with the noise disturbance induced by illumination etc. And
then the object imageOt (x) is obtained via Eq. (1) and shown
in Fig. 2. It (x) denotes the current image, andRt (x) = 1 and 0
represent the motion region (foreground) and the non-motion
region (background) respectively. t is the frame number and
x describes the pixel coordinate.

Ot (x) =

{
It (x) if Rt (x) = 1
0 otherwise

(1)

Fig. 2(a) shows the S and V component histograms of
Ot (x). Obviously the S component only reflects one main
peak while the V component embodies the distinction of
different clusters with multiple main peaks which may rep-
resent car outside, windshield and shadow etc. Therefore,
we employ the V component histogram to estimate the class
number Kt in the current frame as follows.

FIGURE 2. The flow chart of the proposed algorithm. (a) the S and V
component histograms of the object image; (b) estimating the number of
clusters with the MPC of the V component histogram.

Step 1: Extract the peak contour from the V component
histogram and smooth obtain the main peak contour (MPC)
(red solid line in Fig. 2(b)).
Step 2: Judge MPVs as candidate ones when MPVs are

greater than or equal to an adaptive threshold ηt (blue solid
line in Fig. 2(b)). ηt is calculated via (2) , where β ∈ [1.3, 1.4]
denotes a scale factor and MEAN (blue dash line) represents
the average value of MPVs

ηt = β ·MEAN (2)

Step 3: Sum the MPVs being lower than MEAN to obtain
the residual energy, and then compute the percentage of the
residual energy from the total number of MPVs to get the
residual ratio RESt .
Step 4: Calculate the absolute difference of adjacent V

component grayscales ADV (corresponding to adjacent can-
didate peaks), and judge candidate peaks as region peaks
when ADV > α1, otherwise retain the maximum peak to
compare with the next candidate peak and repeat Step 4.
Step 5: Obtain the estimation value of the cluster num-

ber Kt by accumulating the number of region peaks. When
RESt > α2, add a cluster, i.e. Kt ⇐ Kt + 1.
α1 ∈ [10, 15] and α2 ∈ [0.20, 0.45] are the constant

thresholds. In Fig. 2, we set β = 1.38, α1 = 15 and

FIGURE 3. Classifying the object observation and obtaining connection
subregions. (a) the object with scale change; (b) the object with
incomplete detection.

α2 = 0.45, and derive Kt = 3 according to above steps. Then
the object image is classified with K-Means algorithm, and
more details will be further illustrated in Section B. The clus-
tered result is shown in Fig. 2(b), where the white background
is replaced with black so as to highlight the foreground.

B. CLASSIFYING THE OBJECT OBSERVATION AND
OBTAINING CONNECTION SUBREGIONS
When the object appearance is akin to the background or
partially occluded etc, the detected object image may be
incomplete or split into serval segments. Hereby, the object
observation may include more than one motion region, and
Ot (x) no longer can denote an object image. How to cluster
the fractured informations and obtain the object observation
under this case is vital. Furthermore, for the object being
with scale change, how to determine its corresponding obser-
vation in next frame also is an important issue. To address
these problems, we expand the tracked object region (yellow
dash line) in framet-1 with the scale increment 1H to get
the candidate object region (yellow solid line) in frame t
(Fig. 3). 1H is determined empirically to ensure that the
candidate object region can cover the target object. To classify
Ot (x) in the candidate object region, the S and V components
St (x) and Vt (x) of moving pixel x firstly reshaped line by
line into a M × 2 sample intensity matrix 0t (n). M denotes
the total number and n ∈ [1,M ]. Let Ct (1) · · ·Ct (Kt ) be the
cluster centroid intensities and initialized randomly, 0t (n)
is clustered via (3) and a M × 1 clustered matrix Dt (n) is
gained. When a new 0t (n) is classed into the cluster k , the
corresponding new centroid Ct (k) is updated via (4), where
n iterates over all intensities and k ∈ [1,Kt ] iterates over all
centroids. ‖·‖2 is to compute the Euclidean distance and δ
denotes Kronecker delta function.

Dt (n) = k

∣∣∣∣{k := argmin
k
‖0t (n)− Ct (k)‖2

}
(3)
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Ct (k) =

M∑
n=1

0t (n) · δ (Dt (n)− k)

M∑
n=1

δ (Dt (n)− k)

(4)

Then, Dt (n) is mapped to the candidate object region
according to the one-to-one relationship between n and x,
and every cluster is represented with a pseudo-color as shown
in Fig. 3. The numbers of clusters corresponding to the car
(Fig. 3(a)) and the person (Fig. 3(b)) are 3 and 2 respectively.
Every cluster is described with a unique color and includes
multiple 8-connection subregions to reveal the spatial feature
distribution of the object appearance.

FIGURE 4. Connection subregions comparison and analysis. (a) the car 1
sequence with scale and resolution changes. (b) the man 1 sequence with
occlusion and similar color disturbance in the background.

IV. SUBREGION MODELING AND STABLE FEATURE
MINING
A. SUBREGIONS COMPARISON AND ASSOCIATION RULES
ANALYSIS
During tracking the object, the appearance feature often grad-
ually changes along with illumination, object scale and reso-
lution variations, background disturbance and occlusion etc.
These variations affect the clustered results and are mainly
reflected in the subregion center translation, area scaling and
original color shift etc as shown in Fig. 4. The 8-connection
subregions belonging to each cluster are located, and every
subregion center position is marked with the ’+’ (plus) char-
acter. Several representative frames in car 1 and man 1
sequences are given in Fig. 4(a) and (b) respectively. The
number of clusters is ranked in terms of classes. In frame
#230 of Fig. 4(a), the class marked with red corresponds

to subregions 1∼3, while the class marked with green and
blue correspond to subregions 4∼9 and subregions 10∼14
respectively. Similarly, the subregions in frame #239 and
the man 1 sequence in Fig. 4(b) are numbered. The total
number of the subregions grows along with the increase of
the object resolution (Fig. 4(a)), and reduces under occlusion
and incomplete detection (Fig. 4(b)).

It is obvious that some subregions appear continuously
in sequential frames, and they have one-to-one correspon-
dence. In Fig. 4(a), the subregions 8 (skylight glass labeled
with green), 10 (shadow labeled with blue) and 12 (wind-
shield labeled with blue) in frame #230 correspond to sub-
regions 9, 16 and 20 in frame #239 respectively. Similarly,
in Fig. 4(b), subregion 3 (trousers labeled with green) in
frame #199, subregion 1 (red) in frame #201 and subregion
14 (green) in frame #211 also have the association. Even
though the partial body (shirt) of the object is not detected
in frames #201 and #211, other subregions (such as trousers)
can keep the association. The object observation is further
damaged by occlusion in frames #220 and #222 (trousers are
partially detected), but the hair maintains the correspondence.
Our purpose in this paper is to mine the stable object features
(such as the shadow and the trousers in above examples) and
use them to improve the tracking performance. The stable fea-
tures contain two level restrictions. One is that the subregion
feature should exist both in the current frame and the real-
time template simultaneously. The other is that the subregion
feature variation in current frame should satisfy the coherence
and continuity rule, i.e. stable subregions having similar dis-
placement (coherence), and scale change and color shift being
lower than certain thresholds (continuity). If the subregion
feature conforms to both restrictions, they are stable and
reliable in deriving a robust and accurate object trajectory.
Thus, we need to build the continuity and coherence rule for
mining stable subregions, and model the object with local
subregion features. Compared with global features such as
the color histogram [14], [16] and the uniform block-division
based feature [27], our feature model appears sparse, local
or exist momentarily but more robust. Since clustering seg-
ments the object region non-uniformly, it can restrain back-
ground disturbance in the marginal region of the object where
some background features may be introduced under uniform
segmentation.

B. SUBREGION MODELING AND STABLE FEATURE
MINING
Let Er1t =

{
Er1x,t ,E

r1
A,t ,E

r1
S,t ,E

r1
V ,t

}
be the r1-th subregion

template, 1Er1t =
{
1Er1x,t ,1E

r1
A,t ,1E

r1
A_ratio,t ,1E

r1
SV_ratio,t

}
describe the r1-th subregion increment model, and Fs1t ={
F s1x,t ,F

s1
A,t ,F

s1
S,t ,F

s1
V ,t

}
denote the s1-th subregion observa-

tion model.
F̂mt =

{
F̂mx,t , F̂

m
A,t , F̂

m
S,t , F̂

m
V ,t

}
and Êmt ={

Êmx,t , Ê
m
A,t , Ê

m
S,t , Ê

m
V ,t

}
stand for the m-th stable subregion
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FIGURE 5. Stable subregions mining and trajectory tracking.

pair
(
F̂mt , Ê

m
t

)
mined from Fs1t and Er1t respectively. The

subscripts x,A, S,V ,A_ratio and SV_ratio represent the
subregion center coordinate, area, saturation, value, area and
color change ratios respectively. r1 ∈ [1,N1] , s1 ∈ [1,N2]
and m ∈ [1,N3] are the subregion numbers of Er1t , Fs1t and
F̂mt respectively. Er1V ,t is computed via Eq. (5), and Er1S,t ,F

s1
S,t

and F s1V ,t are obtained in the same way.

Er1V ,t =

M∑
n=1

_

V
r1

t (n) · δ (Dt (n)− k)

M∑
n=1

δ (Dt (n)− k)

(5)

To automatically find the associated subregions in the
image sequence, the template difference 1r1

t between Er1t
and Fs1t is firstly computed using Eq. (6). The center distance
d r1x,t , the distance increment1Er1x,t , the area increment1Er1A,t ,
the area change ratio 1Er1A_ratio,t and the color change ratio
1Er1SV_ratio,t are further calculated via Eqs. (7)∼(11) respec-
tively.

1r1
t = Er1t − Fs1t =

{
1r1

x,t ,1
r1
A,t ,1

r1
S,t ,1

r1
V ,t

}
=

{
Er1x,t−F

s1
x,t ,E

r1
A,t−F

s1
A,t ,E

r1
S,t−F

s1
S,t ,E

r1
V ,t−F

s1
V ,t

}
(6)

d r1x,t =
(
1r1

x,t ·
(
1r1

x,t

)T) 1
2

(7)

1Er1x,t = 1
r1
x,t (8)

1Er1A,t = 1
r1
A,t (9)

1Er1A_ratio,t =
1r1
A,t

Er1A,t
(10)

1Er1SV_ratio,t

=


(
1r1
S,t ,1

r1
V ,t

)
·

(
1r1
S,t ,1

r1
V ,t

)T
(
Er1S,t ,E

r1
V ,t

)
·

(
Er1S,t ,E

r1
V ,t

)T


1
2

(11)

In what follows, we use Eq. (12) to associate Er1t and Fs1t ,
mine

(
F̂mt , Ê

m
t

)
and acquire the stable subregion increment

1Êmt , where d
r1
x,t ≤ µt ∩

∣∣∣1r1
A_ratio,t

∣∣∣ ≤ λ1 ∩1r1
SV_ratio,t ≤ λ2

is multi-feature distances based the coherence and continuity
rule.
When this rule is satisfied,

(
Er1t ,F

s1
t
)
is judged to be stable

and assigned to
(
F̂mt , Ê

m
t

)
via Eq. (12). The stable subregion

increment 1Êmt =
{
1Êmx,t ,1Ê

m
A,t ,1Ê

m
A_ratio,t ,1Ê

m
SV_ratio,t

}
is accordingly obtained. If Er1t is stable, we set the stable
sign φr1t = 1, or else φr1t = 0, which will be further

used in template updating. µt = max
{(
Er1A,t

) 1
2
,
(
F s1A,t

) 1
2
}

is an adaptive threshold, λ1 ∈ [0.3, 0.5] and λ2 ∈ [0.1, 0.3]
are constant thresholds. The stable subregion difference 1̂

m
t

between Êmt and F̂mt is acquired via Eq. (13).{
Êmt , F̂

m
t ,1Êmt

}
=

{
Er1t ,F

s1
t ,1Er1t

}∣∣∣ {Er1t ,Fs1t ,1Er1t
}

:= arg
(
d r1x,t ≤ µt ∩

∣∣∣1r1
A_ratio,t

∣∣∣ ≤ λ1 ∩1r1
SV_ratio,t ≤ λ2

)
(12)

1̂
m
t = Êmt − F̂mt =

{
1̂m

x,t , 1̂
m
A,t , 1̂

m
S,t , 1̂

m
V ,t

}
(13)

V. OBJECT TRACKING AND TEMPLATE UPDATING
Here, we update the current object template Er1t with sta-
ble subregions mined in frame t-1, and employ the center
displacement 1̂m

x,t between Êmt and F̂mt to derive the object
displacement between neighbor frames. To obtain the object
trajectory xt , the average template increment 1̄t is firstly
computed by systematically fusing the stable subregion incre-
ment 1̂

m
t via Eq. (14). The larger the subregion area is, the

more reliable the stable increment 1̂
m
t is. On this basis, we

adopt ÊmA,t to weight 1̂
m
t for increasing the voting power of

the subregion being with larger area and vice versa. Then
xt is acquired via Eq. (15) in terms of the average cen-
ter displacement 1̄x,t , the historical trajectory xt−1 and the
detected center trajectory xdet ectt in object region. If none of
the subregions are stable under some cases such as heavy
or total occlusion, 1̄t is estimated with 1̄t−1. γ1 ∈ [0.9, 1]
is to endow 1̄x,t higher weight in determining xt . xdet ectt is
use to restrain the tracking drift introduced by accumulated
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FIGURE 6. The initial object trajectory. (a) car 1; (b) man 1; (c) car 2; (d) chair; (e) man 2; (f) man 3.

FIGURE 7. The tracked results with ICIA, STC SCC, MS and KCF algorithms in the car 1 sequence.

error etc.

1̄t =
{
1̄x,t , 1̄A,t , 1̄S,t , 1̄V ,t

}
=

N3∑
m=1

ÊmA,t · 1̂
m
t

N3∑
m=1

ÊmA,t

(14)

xt = γ1 ·
(
xt−1 − 1̄x,t

)
+ (1− γ1) · xdet ectt (15)

Let 1̄A_ratio,t be the average area change ratio of stable
subregions, SIGN denote the plus-minus sign of 1̄A_ratio,t ,
and 8x,t and 8A,t describe the average displacement
and area increments of the stable subregions as in Eqs.
(16)∼(19). 1̄A_ratio,t is calculated with the weighted average
of 1̂EmA_ratio,t via Eq. (16).

1̄A_ratio,t =

N3∑
m=1

ÊmA,t · 1̂E
m
A_ratio,t

N3∑
m=1

ÊmA,t

(16)

SIGN =


1 if 1̄A_ratio,t > 0
−1 if 1̄A_ratio,t < 0
0 otherwise

(17)

8x,t = 1̄x,t ·

(
1− SIGN ·

∣∣1̄A_ratio,t
∣∣ 12) (18)

8A,t = 1̄A,t ·
(
1− 1̄A_ratio,t

)
(19)

Since stable subregion observations in the current frame
can support a robust update of stable features, we separately
update stable and unstable features. Specifically, we update
Er1x,t and E

r1
A,t in terms of the stable sign φr1t via Eqs. (20)

and (21). As for the stable subregion, Er1x,t is updated by

weighting the subregion increment 1Er1x,t and the average
increment 8x,t . We select γ2 ∈ [0.8, 1] to save more stable
suregion observation informations and use8x,t to relieve the
excessive update. To the unstable subregion without directly
observation for self-renewaling, 8x,t is adopted to estimate
Er1x,t+1. E

r1
A,t is updated in a similar way as in Eq. (21). To the

S and V translational variations caused by gradual illumina-
tion, the average color translations 1̄S,t and 1̄V ,t here are
employed to updateEr1S,t andE

r1
V ,t (include stable and unstable

subregions) via Eqs. (22)∼(23). If none of the subregions are
stable, Er1t+1 = Er1t .

Er1x,t+1 = Er1x,t − φ
r1
t ·

(
γ2 ·1Er1x,t + (1− γ2) ·8x,t

)
−

(
1− φr1t

)
·8x,t (20)

Er1A,t+1 = Er1A,t − φ
r1
t ·

(
γ2 ·1Er1A,t + (1− γ2) ·8A,t

)
−

(
1− φr1t

)
·8A,t (21)

Er1S,t+1 = Er1S,t − 1̄S,t (22)

Er1V ,t+1 = Er1V ,t − 1̄V ,t (23)

Fig. 5 presents the process and qualitative performance of
the stable feature mining and object tracking scheme in the
car 1 sequence. This sequence includes resolution and scale
changes (frames #230 and #239), and accelerant movement
along with fast appearance reduction due to the object being
about to leave from the field of view (frame #244). Fig. 5
depicts the initial template (frame #230), clustered subregion
observations, mined stable subregions and the tracked object
trajectories over time in frames #239 and #244. The mined
stable subregions are marked with the same colors and ’+’
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FIGURE 8. The tracked results with ICIA, STC, SCC, MS and KCF algorithms in the man 1 sequence.

FIGURE 9. The tracked results with ICIA, STC, SCC, MS and KCF algorithms in the car 2 sequence.

characters as that done in the corresponding observations.
The stable subregion centers are further fused to locate the
object trajectory (the white round dot). Our method success-
fully tracks the object in terms of the initial trajectory in
frame #230. In frame #239, stable subregions, such as shadow
(blue), windshield (blue), hood (red) and carframe (green),
almost cover the total object region and indeed provide reli-
able and powerful supports for object locating. In frame
#244, the partial object body is detected and only one stable
subregion (partial car roof) is mined. Since we use xdet ectt to
correct the object trajectory, our method can stably locate the
partial object even though most of the car body is out of the
field of view.

VI. EXPERIMENTAL RESULTS
The proposed algorithm is implemented on a PC with a
2.1GHz AMD A8-5550M CPU, Windows 7 operation sys-
tem and MatLab implementation. To evaluate our method,
we conduct comparison experiments among the presented
ICIA based tracking method, and one classical and three

state-of-the-art methods, including MS [14], STC [17],
SCC [29] and KCF [24] trackers. All these algorithms
are tested on five challenging sequences with partial or
heavy occlusions, similar color disturbance in the back-
ground, blurry and ambiguous appearance, scale and reso-
lution changes, fast movement and rotation etc. And these
tested sequences cover many tracking scenarios including
both indoor and outdoor, and various object types such as
rigid (vehicle and chair) and nonrigid (person) objects, and
large and small objects. Some examples are presented in
Figs. 6∼12, where the round marks illustrate the tracked
object trajectories in every frame and the dash lines denote
the historical trajectories.

A. COMPARISON ON QUALITATIVE TRACKING
PERFORMANCE
The round marks in Fig. 6 are the initial center trajectories
of the objects corresponding to car 1, man 1, car 2, chair,
man 2 andman 3 sequences respectively, which are automat-
ically determined by motion detection in the first frame and
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FIGURE 10. The tracked results with ICIA, STC, SCC, MS and KCF algorithms in the chair sequence.

FIGURE 11. The tracked results with ICIA, STC, SCC, MS and KCF algorithms in the man 2 sequence.

coincidewith the center position of the detected object region.
Figs. 7∼12 present the comparisons on qualitative tracking
performances of six sequences. The white, green, blue, pur-
plish red and orange roundmarks denote the currently tracked
object trajectories of ICIA, STC, SCC, MS and KCF trackers
respectively. Meanwhile, the red, green, blue, purplish red
and orange dash lines denote the corresponding historical
trajectories. All the trackers are automatically initialized with
same initial trajectories.

In Fig. 7, the car 1 sequence tested includes accelerant
movement, and scale and resolution changes to the object.
The outputs of trackers in frames #233, #237, #240, #242
and #244 (from left to right) are illustrated. After frame
#240, significant appearance details appear along with the car
accelerating towards the camera. Meanwhile, the partial car
appearance rapidly loses due to its quicklymoving away from

the field of view. Under this sequence, ICIA outperforms
other trackers and robustly tracks through the appearance and
scale variations.We can see from the tracked results that KCF,
STC and SCC algorithms can successfully track the object
when most car appearance keeps in the field of view. But in
frame #244, they show obvious trajectory drift. Nevertheless,
the kernel based color histogram model cannot adapt to the
dramatic changes in the appearance resolution and scale of
the object, which makes the MS tracker converge to the
local extremum and leads to failures (frames #240, #242
and #244).

The testedman 1 sequence is displayed in Fig. 8. The main
challenges are heavy occlusion and similar color disturbance
in the background (bookcase and desk) that occur as the man
moving. Rows 1 and 2 give the tracked results in frames
#201, #209, #219, #222, #224 and #228. Under SCC and
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FIGURE 12. The tracked results with ICIA, STC, SCC, MS and KCF algorithms in the man 3 sequence.

MS methods, trajectories are hijacked by coexisting partial
occlusion and background disturbance as illustrated in frame
#222. STC and KCF methods can handle this case due to
their robust confidence model and correlation filter model
respectively. However, when the object is heavily occluded
(frame #224), the STC and KCF trackers cannot find the
credible object position and stays around the place where the
object loses. In comparison, the proposed ICIA method can
handle these difficulties as it replaces the global model using
a local stable subregion model of the object, and effectively
estimates the average center displacement under heavy or
total occlusion (frame #224). Our ICIA tracker can stably
follow the object until frame #228. We can see from the
tracked results that a good strategy for feature modeling is
needed for the tracker.

Fig. 9 provides the tested car 2 sequence which includes
fast movement, background disturbance and low resolution
appearance to the object. Rows 1 and 2 present the tracking
outputs in frames #123, #125, #127, #129, #130 and #131.
In spite of the object being of low resolution appearance
and influenced by the shadow and reflection of the plant
in the scene, the proposed ICIA tracker, the KCF tracker
and the STC tracker can accurately locate the object before
frame #130. In frame #131, KCF and STC methods give the
trajectory outside the field of view where the object quickly
moves and the partial object body goes out of the image
bound. Our ICIA tracker handles this specific type of scenario
easily and still keeps robustly tracking the partial car body
with the help of the detected trajectory. However, under this
case, SCC and MS trackers have apparent lags in frames
#127, #129 and #131 due to no structure or histogram feature
stably exists for more than two or three frames, and this raises
the chance of tracking failure.

The tracked results of the tested chair sequence, which
includes rapid posture change, fast movement and rotation,
and similar color disturbance in the background, are illus-
trated in Fig. 10. Rows 1 and 2 describe the results of trackers
in frames #823, #829, #832, #834, #838 and #841. Even
though these kinds of objects are deformable, the stable sub-
region feature, the correlation filter, the confidence map and
the structure models are enough robust. The tracked trajec-
tories illustrate that ICIA, KCF, STC and SCC successfully
accomplish the tracking task as the object quickly moves
from left to right and rotates to show different postures. Since
the MS tracker focuses on matching the color histogram, the
iteration process is distracted by the opened bookcase being
of the similar feature to the object (frame #823), and this
makes theMS tracker gradually loses the object (frame #829).
However, the MS tracker keeps searching in terms of pre-set
iteration times and just finds the object again where the object
comes back under the effect of the rotatory inertia (frame
#841).

The tested results of the man 2 sequence are described
in Fig. 11. The main challenges are clutter background, low
resolution and ambiguous appearance, similar color distur-
bance in the background, heavy occlusion and multiple times
occlusions. Rows 1 and 2 show the outputs of trackers in
frames #282, #298, #301, #312, #315, #316, #320 and #344.
Under these cases, the tracker that relies heavily on color or
structure is more vulnerable to drifting. As shown in frames
#282, #298 and #301, the MS tracker fails to track the object.
Although the SCC tracker can deal with the partial occlusion
in frames #298 and #301, it fails to track the ambiguous object
in such low resolution and clutter scene as in frame #312
(the partial observable object body being intermixed with
the background). In frames #315 and #316, occlusions are
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FIGURE 13. Trajectory error comparisons. (a) car 1; (b) man 1; (c) car 2; (d) chair; (e) man 2; (f) man 3.

simultaneously induced by the two obstructions being with
the similar color to the object, which makes it difficult to
identify the object. The STC and theKCF trackersmistake the
static occluder for the optimal confidence observation, and
keep locate this occluder (frame #315) in subsequent frames.
However, the presented ICIA tracker succeeds under above
difficult scenarios for the sake of its integration of stable
subregions displacements, historical trajectory and motion
detection towards handling the ambiguity in clutter back-
ground and occlusion.

In Fig. 12, theman 3 sequence (PETS 2009) tested includes
partial and heavy occlusions along with similar color and
similar object disturbances to the object in the multi-object
scenario. The target man walks with varying body pose and
pace. The outputs of trackers in frames #11, #40, #43, #51,
#53 and #60 are illustrated (Rows 1 and 2). From frame #36
to #46, the upper body of the object is totally or partially
occluded by a guidance sign. And from frame #51 to #55,
the target object is heavily or partially occluded by another
object with similar appearance feature. The ICIA and the
KCF trackers outperform other trackers under these cases.
The STC tracker can successfully track the object before
frame #38. But After frame #38, it starts to drift away from
the object as a result of occlusion. Meanwhile, theMS tracker
shows evident trajectory drift from frame #40 due to the
influence of the accumulated error induced by Kalman filter
estimation, and stays far away from the target object. The
SCC tracker mistakenly locates the other men with similar
structure feature as in frames #40 and #43. However, it cap-
tures the location of the object again when the target man is
out of occlusion after frame #51. Although both ICIA and
KCF have small deviations in several frames as in #51 and

#53, they achieve good performance throughout the video
sequence.

B. COMPARISON ON QUANTITATIVE TRACKING
PERFORMANCE
The trajectory error between the tracked result xt = {xt , yt }
and the ground truth x̂t =

{
x̂t , ŷt

}
is computed with

Euclidean distance
∥∥xt − x̂t

∥∥
2. The trajectory error versus

frame graphs are shown in Fig. 13, where red, green, blue,
purplish red and orange solid lines denote ICIA, STC, SCC,
MS andKCF trackers respectively. For each testing sequence,
the average trajectory error x̄error is calculated via Eq. (24).
N is the total number of image frames and x̂t is acquired by
manual method.

x̄error =
1
N

N∑
t=1

∥∥xt − x̂t
∥∥
2 (24)

Table 1 summarizes the tracking results of six different test
sequences. One can see that the proposed ICIA tracker most
accurately locates the objects in car 1, man 1, man 2 and
man 3 sequences. In these sequences, larger trajectory drift
occurs to other four trackers due to accelerant movement
along with scale change, rapid appearance disappear, and
occlusion companied by similar color and similar object dis-
turbances etc. As shown in Fig. 13, these cases appear around
frame #243 in Fig. 13(a), frame #224 in Fig. 13(b), frame
#310 in Fig. 13(e) and frame #37 in Fig. 13(f) respectively.
The ICIA tracker also robustly tracks the objects in car 2
(Fig. 13(c)) and chair (Fig. 13(d)) sequences and shows the
second-best performance with only less 1 pixel distance dif-
ference than the best method. The STC tracker shows the best
tracking performance in the car 2 sequence. Furthermore,
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TABLE 1. Quantitative comparisons: the average trajectory errors
(Units: Pixels). (The red mark represents the best results, and green and
blue marks denote the second-best and the third-best results
respectively.)

the STC tracker achieves the third-best performance in other
sequences and is with almost equivalent accuracy to ICIA,
KCF and SCC trackers in the chair sequence. In car 1, man
2 and man 3 sequences, although the STC tracker obtains
the third-best performance, its average trajectory error is
much higher than that of the ICIA tracker. The KCF tracker
demonstrates the second-best tracking performance in the car
1, man 1, man 2 and man 3 sequences and the third-best
performance in the car 2 sequence. It also has less trajectory
error in the chair sequence. The SCC tracker has an optimal
performance in tracking the object with rotation and posture
changes as in the chair sequence. However, we can find from
the trajectory error versus frame graph that the SCC tracker do
have some difficulties in handling the object with rapid struc-
ture variation, and blurry appearance along with occlusion
induced by clutter background etc. In contrast, theMS tracker
is with higher trajectory error which can be mainly attributed
to its sensitive to similar color disturbance, and fast changes
in object scale and appearance etc. In comparison with KCF,
STC, SCC and MS trackers, the ICIA tracker produces better
tracking results. It is mainly because we construct a good
appearance model using the local stable subregion features,
which are robust to occlusion (heavy occlusion and many
times occlusions), ambiguous object in clutter scene along
with similar color or object disturbance, scale and posture
changes accompanied with accelerant and fast movements
etc. With the motion detecting process, the ICIA method can
prevent the similar color influence in the background and
rectify the cumulative error in time. In addition, the ICIA
method successfully tracks the objects both in benchmark
(man 1, chair, car 2, man 2 and man 3) and the video
captured by us (car 1). Note that the ICIA tracker shows a
small trajectory error, which reveals that the proposedmethod
obtains considerably stable tracking results.

VII. CONCLUSIONS
In this paper, we have proposed to mine stable features
to improve object representation, and enhance the robust-
ness of object tracking. This study is motivated by the idea
that sparse but reliable features can achieve a more accu-
rate and robust tracking. We have presented an ICIA based
stable feature mining framework for object tracking. This
is composed of motion detecting, the number of clusters

estimating, intraframe clustering, connection subregion mod-
eling, stable subregion mining and displacements fusing,
as well as model updating. Experimental evaluations (both
qualitative and quantitative) on several challenging image
sequences show that our approach performs more robustly
and reliably than several relevant state-of-the-art algorithms.
Although the results are promising in certain situations, fur-
ther evaluation is anticipated in more complicated data sets.
We have implemented all of the experiments without code
optimization. Real-time tracking will be the further develop-
ment. A future work inclines to integrate the stable feature
mining based tracking framework into multi-object tracking
to handle the dynamic occlusion and mutual disturbance
among similar objects.
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