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Abstract—With the widespread adoption of multi-device com-
munication, such as telecommuting, screen content images (SCIs)
have become more closely and frequently related to our daily
lives. For SClIs, the tasks of accurate visual quality assessment,
high-efficiency compression, and suitable contrast enhancement
have thus currently attracted increased attention. In particular,
the quality evaluation of SCIs is important due to its good
ability for instruction and optimization in various processing
systems. Hence, in this paper, we develop a new objective metric
for research on perceptual quality assessment of distorted SCIs.
Compared to the classical MSE, our method, which mainly relies
on simple convolution operators, first highlights the degradations
in structures caused by different types of distortions and then
detects salient areas where the distortions usually attract more
attention. A comparison of our algorithm with the most popular
and state-of-the-art quality measures is performed on two new
screen content image databases (SIQAD and SCD). Extensive
results are provided to verify the superiority and efficiency of
the proposed IQA technique.

Index Terms—Screen content images (SCls), image quality
assessment (IQA), visual saliency

I. INTRODUCTION

ECENT advances in cloud and mobile computing have

drawn wide interests and new challenges to perceptual
codings, quality assessment and computer graphics communi-
ties. In many scenarios, e.g., cloud-mobile applications [1],
[2], [3], remote computing platforms [4], and cloud gam-
ing [5], remote computing is facilitated based on the users’
interaction with the local display interface, which typically
includes computer-generated screen content images (SCIs).
These images are generally created and compressed at the
server followed by transmission to the thin client side. This
procedure inevitably introduces artifacts, leading to the quality
degradation of SCIs and thereby the deterioration of the
interactivity performance and the users’ experience. Therefore,
accurately predicting the screen quality with an objective algo-
rithm plays a variety of roles in cloud and remote computing
applications. First, it can be used to dynamically monitor the
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Fig. 1: The first row provides screen content images. The second
to fourth rows respectively show fixation-inspired saliency maps,
saccade-inspired saliency maps, and combined saliency maps.

quality of SCIs and adjust resources to enhance the remote
computing experience. Second, it can be used for optimization,
e.g., screen content coding [6], towards better rate distortion
performance. Third, it can work as a benchmark in the quality
evaluation of a remote computing system.

In multimedia signal processing, image quality assessment
(IQA) has long enjoyed popularity for decades, especially the
last ten years. Wang et al. proposed the structural similarity
index (SSIM) [7], considering that the human visual system
(HVS) is very sensitive to structural information. Since then,
many variants have been developed with various tactics for
polishing SSIM, e.g., [8], [9], [10], [11], [12]. Other designs
were explored using information theory and statistics [13],
the brain principle [14] and low-level vision [15], [16], [17],
[18], [19]. Interested readers can refer to [20] for a thorough
survey. Notwithstanding the prosperity of IQA methods, the
abovementioned ones perform well in the quality estimation



of natural scene images (NSIs), but fail in that of SCIs. In this
paper, we therefore endeavor to present a new high-accuracy
objective IQA technique for SCIs.

In most situations, SCIs are mixed with NSIs and computer-
created graphical content, which usually contains both texts
and graphics, as shown in Fig. 1. There are many distinctions
between SCIs and NSIs. Capturing natural video will induce
noise because of the limitations of image sensors. The SCIs
are, however, fully noise free and directly created by screen-
recording tools. The camera-captured NSIs mostly feature
thick lines, rich color variations and complex texture content,
whereas the computer-created SCIs are full of thin lines,
limited colors and uncomplicated shapes [21], giving rise to a
particular challenge in the study of IQA.

One direct strategy to solve the problem is to distinguish
various kinds of regions, such as textual and pictorial ones,
before systematically integrating the quality score of each part
to infer the overall quality score [22], [23]. This approach,
however, is considerably time-consuming and sort of ad-hoc.
Another strategy that works is to integrate visual saliency since
it has been proved to be effective in the quality evaluation of
NSIs from theoretical, experimental and practical perspectives
[24], [25], [26], [10], [15], [18], [27]. A majority of saliency
detection models have been developed during the past 25
years, consisting of top-down task-dependent methods and
bottom-up stimulus-driven methods [28]. Most of the existing
techniques belonging to the bottom-up methods are devoted
to seeking locations with the maximum local saliency based
on biologically motivated local features [29], [30], [31], [32],
[33]. The features are inspired by neural responses in the
lateral geniculate nucleus and V1 cortex, usually including
the intensity, contrast, edge, texture, color and orientation
[34]. Some other relevant techniques based on global features
attempt to find regions from a visual signal that implies unique
frequencies in transform domains [35], [36], [37], [38]. This
type of model can quickly and precisely detect visual “pop-
outs” and locate possible salient objects.

However, based on tests, most saliency detection models do
not work well for the IQA of SCIs. Instead, we concentrate
on the recognition and clarity of the salient areas, i.e., texts
and their surroundings. These areas are detected through a
simple detector, motivated by the behaviors of “fixation” and
“saccade” [39]. Furthermore, as given in Fig. 1, we illustrate
three images from the new screen image quality assessment
database (SIQAD) [22], [23]. We can see that SCIs typically
contain more thin structures than NSIs. Based on this concern,
the gradient operator for highlighting structural variations is
leveraged to quantify the visual degradation in the corrupted
image with respect to its reference image. Our Saliency-guided
Quality Measure of SCIs (SQMS) is finally developed by
combining the structural variations with visual saliency.

The remainder of this paper is organized as follows. Section
II first presents the SQMS model explicitly. In Section III, a
comparison of our SQMS with mainstream and state-of-the-art
IQA methods is conducted on the new SIQAD [22], [23] and
screen content database (SCD) [40], and some analyses and
description of future works are provided. We finally conclude
this paper in Section IV.

II. METHODOLOGY
A. Saliency Detection

It was reported in [10], [15], [18], [27] that visual saliency
is able to promote the performance of IQA metrics in real
applications. However, it was observed using tests that most
existing saliency detection technologies do not achieve sat-
isfactory performance in screen content IQA tasks, possibly
due to the distinct perceptual mechanisms of NSIs and SCIs.
In particular, humans understand the semantic information in
a NSI through a comparison of location, orientation, intensity,
and color between the foreground and background elements
or different objects. By comparison, for a SCI, the semantic
information is mainly contained in the textual parts.

A straightforward yet valid method involves simulating
the behavior of human eye movements, i.e., “fixation” and
“saccade”, by which humans identify information to predict
visual saliency. However, this method is not easy because of
the existence of many complicated behaviors, e.g., “saccadic
suppression” [41], “crowding effect” [42], etc., and their
interactions. Our attention is mainly focused on the subsequent
two aspects: the first is that we do not want to produce visual
saliency as accurate as eye-tracking experiments but search
for possible salient points. The second is that an efficient
saliency detection technique is one of our primary pursuits. On
this basis, we develop a simple saliency detector for quickly
detecting salient regions in SCIs.

It has been stated in [39] that “We move our eyes about
three times each second via rapid eye movements (saccades)
to reorient the fovea through the scene. Pattern information
is only acquired during periods of relative gaze stability (fix-
ations) owing to ‘saccadic suppression’ during the saccades
themselves”. In eye-tracking experiments, some neighboring
gaze points are typically clustered to be a fixation point that
is remarkably different from its surroundings. Then, all the
fixations can yield the final visual saliency map. Motivated by
this process, visual saliency can be approximately understood
as the points that have larger local contrast compared to their
vicinities in a proper window. In reality, this supposition has
been broadly employed in numerous classical and recently
devised saliency detection models [29], [30], [31], [32], [33],
resulting in a fairly good performance. Inspired by this, we
attempt to measure visual saliency by comparing the local
similarity between a visual signal r and its smoothed version
by Gaussian low-pass filtering:

Mf(r) = fs(rv rg) (D

where fs(-) computes the similarity of two elements in the
bracket! and r, is created by applying a “Gaussian” convo-
lution operator on r. We apply a n x n circular-symmetric
Gaussian weighting function in this implementation:
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The gradient magnitude similarity, as defined in (6)-(9) later, is employed
for this on account of its efficiency and highlights of important structural
information in HVS perception.



Fig. 2: Illustration of the gradient magnitude (GM). From the left to right, the top row includes one clear screen content image and six
distorted versions corrupted by Gaussian noise, Gaussian blur, motion blur, contrast change, JPEG compression and JPEG2000 compression.

The bottom row shows the associated GM maps.

where “®” indicates the convozlutig)n operation, ¢ is the pixel
index, and g = —— exp (— Z1122) with the standard devia-
tion of o being normalized to the unit sum. The values in r, lie
within the range [0, 1]. The parameter values are empirically
set to be n = 11 and o = 5.5. In Fig. 3(a), we illustrate
the “Gaussian” convolution kernel. More analyses regarding
the sensitivity of the parameter values will be provided in the
next section.

Notice that compared to nonsalient pixels, salient pixels of
larger local contrast are usually degraded more by Gaussian
filtering; thus, they have lower similarity between r and r,
and have lower values than their neighbors in M¢. Taking the
abovementioned three sample SCIs in Fig. 1 as examples, we
present the associated fixation-inspired saliency maps in the
second row. It is not hard to see that the required textual parts
and their vicinities are detected successfully. However, it is
unlucky that the unexpected frame lines are highlighted, as
well.

Another behavior found in human eye movement is “sac-
cade”, which causes one kind of “motion blur” effect that plays
an especially significant role in perceiving SCIs [43]. This
effect indicates that visual saliency is not only influenced by
the pixels in a local window of the proper size but also affected
by the comparatively distant pixels along the saccadic direc-
tion, e.g., in the textual areas. Specifically, we approximate the
saccade-inspired visual saliency using a simple method and
define it to be the local similarity of r and its motion-blurred
version:

Ms(r) = fs(ra rm) (3)

where r,, is produced by convolving r with a “motion blur”
kernel that is defined as

1
= 1
m{o

where ¢ is the amount of motion in pixels and 6 is the
motion direction with its angle along the horizontal x axis.
The parameter values are empirically set to be ¢ = 9 and
0 = 1. This “motion blur” convolution kernel is visualized in
Fig. 3(b). The parameter sensitivity will be discussed in the
next section. Furthermore, we present the associated saccade-
inspired saliency maps in the third row in Fig. 1 for easy
comparison. We found that in contrast to isolated letters in
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Fig. 3: Convolution kernels: (a) Gaussian blur, (b) motion blur.

fixation-inspired saliency maps, the neighboring letters are
considered to simulate the “motion blur” effect of human eye
movements. Additionally, we observed that the highlighted
undesired frame lines in fixation-inspired saliency maps are
decreased, to some extent.

Incorporating the merits of fixation- and saccade-inspired
saliency maps for generating a suitable saliency map is still a
difficult problem. A simple solution is to use a linear weighted
additive model as follows:

M f+ Mg

M(r) T+ A

where A is a fixed positive number used to manipulate the
relative importance between two components. As can be seen
in the fourth row in Fig. 1, the resulting combined saliency
maps with A = 1 are able to capture the important texts and
the surrounding areas as well as the main contours in natural
scene regions. We further investigate the performance based on
some classical nonlinear models, e.g., [10], [15], to combine
fixation- and saccade-inspired saliency maps. The results tell
us that these nonlinear models introduce more computations
but do not lead to noticeable performance gain in the overall
image database and each type of distortion subset.

(6)

B. Quality Evaluation

The HVS is strongly sensitive to structural variations, espe-
cially in quality prediction. In this paper, the gradient magni-
tude (GM) is used to gauge the structural degradation because,
on the one hand, it has been widely applied in many image
processing and computer vision applications, such as contour
detection, optical flow and segmentation, and, on the other
hand, it has also been recently found to perform effectively
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Fig. 4: Comparison of (a) the gradient-based G maps and (b) the
structure-inspired SSIM maps.

Fig. 5: Tllustration of the finally generated SQMS_MAP maps.

in the IQA measures [15], [16], [17], [18]. Specifically, the
image gradient magnitude is extracted via the Scharr operator
[44], which is expressed by applying convolution masks to an

input image signal s:
pP=/P;+p; (6)
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where p,, and p,, represent the Scharr convolution masks along
the x- and y-axes, respectively. We chose one representative
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Fig. 6: The flowchart of the proposed image quality metric.
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SCI and its six distorted images from the SIQAD database
[22], [23] as well as their corresponding GM maps, as given
in Fig. 2. For the clear original SCI, the GM highlights texts
and the structural information. By comparison, the GM maps
of distorted SCIs can reflect the visual degradation caused
by different distortion types. For example, the Gaussian blur
largely reduces the clarity of texts.

We then make use of the common similarity metric, which
provides the three advantages of symmetry, boundedness and
unique maximum [7], to measure the difference in GM maps
between the reference image r and the distorted one d:

2p, -pgtc
P +p;+c

where p,. and p; are GM maps of the original and dis-
torted images, respectively, and c is a positive constant for
avoiding instability. In Fig. 4(a), we present the six G maps
corresponding to the distorted images in Fig. 2, where a
brighter gray level denotes higher similarity and thus a lower
distortion level. As expected, the G maps succeed in capturing
the remarkable difference between the original and distorted
images.

In addition, we stress that the structure-inspired SSIM [7]
is also a good candidate choice. We further provide the SSIM
maps in Fig. 4(b) for comparison. As seen, in contrast to G
maps, SSIM maps, due to the use of large-size windows for
low-pass filtering, exert a high degree of denoising effects
on the noisy image and do not accurately characterize the
degradations in the texts of thin lines. Moreover, from the
viewpoint of computational cost, the GM operator with four
convolution operations in a 3 3 window is also superior to the
SSIM metric with five convolution operations in the 11 x 11
window. Under the above considerations, the GM operator is
preferred for the quality evaluation.

Our SQMS metric is developed using the saliency map M
to weight the GM similarity map G. It should be noted that
higher-value elements in M are more similar to the neighbors
and thereby have less visual saliency. Hence, we reverse the
visual saliency to derive the weighting map to be:

W(r) =1—M(r)

G(r,d) = &)

(10)

with A = 1. More sensitivity tests on A will be provided in the
next section. Notice that the whole local distortion map (i.e.,
gradient-based G map) is used to predict the quality score,
and the salient pixels are highlighted. The SQMS_MAP map



can be obtained by
G(ri, d;) - W(r;)
k
% 2im1 W(ri)

where k denotes the total number of pixels in the image. In
Fig. 5, we display the six SQMS_MAP maps for the distorted
SCIs in Fig. 2. The SQMS_MAP effectively emphasizes the
regions that not only include substantial textual and structural

degradations but also attract a lot of visual attention. We finally
obtain the SQMS score using the global mean:

SQMS_MAP(r;, d;) = (11)

k
SQMS(r,d) = % > SQMS_MAP(r;, d;).
=1

(12)

The flowchart of our proposed IQA model is shown in Fig. 6
for the reader’s convenience.

III. EXPERIMENTS AND ANALYSES
A. Screen Content Database

To the best of our knowledge, there are two new image
databases dedicated to the screen content IQA, i.e., SIQAD
[22], [23] and SCD [40]. The first SIQAD database includes
up to 980 distorted SCIs generated by corrupting 20 sources
with seven distortion types at seven distortion levels. These
20 reference SCIs are gathered from webpages, slides, PDF
files and digital magazines by screen snapshots, as shown
in Fig. 7, and are then cropped to the proper sizes so they
can be natively displayed on computer screens during the
subjective experiment. The seven distortions types, consisting
of Gaussian noise (GN), Gaussian blur (GB), motion blur
(MB), contrast change (CC), JPEG compression, JPEG2000
compression (JP2K) and Layer Segmentation-based Coding
(LSC) [45], are applied to each of the original SCIs. In
accordance with the suggestion in ITU-R BT.500-13 [46], this
test utilizes one of the most frequently used single stimulus
(SS) methods with a 11-point discrete scale (from the worst
“0” to the best “10” with an interval of “1”) for scoring.
All the subjects, who are university undergraduate or graduate
students without any experience and knowledge about quality
assessment, are asked to provide their visual opinion scores
for each testing image at a viewing distance that is about 2-
2.5 times the image height. Because the participants are not
experts, they will be trained by adequate typical samples with
various distortion types and intensities before proceeding to
formal subjective testing.

Upon obtaining the opinion scores of each subject for
each testing image, the consistency should be examined to
guarantee the availability of the subjective quality ratings. In
particular, for each image, the number and standard deviation
of the scores are used to compute the confidence interval and
thus determine the consistency. Under the assumption of a
95% confidence level, the difference between the computed
differential mean opinion score (DMOS) and the “real” quality
score should be less than the 95% confidence interval limits
[46]. As illustrated in Fig. 8, the distribution of confidence
intervals with respect to all the DMOS values is centralized
on small values, from O to 7. Finally, by normalization, the
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Fig. 8: Distribution of the confidence intervals related to all the
DMOS values on SIQAD. Smaller values indicate higher reliability.

Fig. 9: The 24 reference screen content images in the SCD database.
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Fig. 10: Distribution of the confidence intervals related to all the
DMOS values on SCD. Smaller values denote higher reliability.

DMOS value of each image in the SIQAD database ranges
from 24.2 to 90.1.

The second SCD database is composed of a total of 492
compressed SCIs produced using two coding technologies to
compress 24 reference SCIs, which have three typical image
resolutions of 2560 x 1440, 1920 x 1080 and 1280 x 720,
as presented in Fig. 9. The two coding technologies are
high-efficiency video coding (HEVC), the performance of
which is based on a 4:2:0 color format, adaptive quad-tree



TABLE I: Performance comparison of 13 IQA models on SIQAD and SCD databases. We denoted the best-performing model in bold.

SIQAD NQM SSIM  MS-SSIM  VIFP VSNR |IW-SSIM  FSIM, GSI  SW-SSIM  SIQM LTG VSI SQMS
(471 [7] [8] [13] [48] [9] [15] [16] (11] [49] [17] [18] (Pro.)

Xp 0.5200 0.7615 0.6195 0.8489 0.5966 | 0.6536  0.5920 0.5686  0.6117  0.8625 0.7461 0.5568 | 0.8872
Xs 0.5321 0.7583  0.6112  0.8451 0.5693 | 0.6546  0.5817 0.5483  0.6064  0.8582 0.7341  0.5381 | 0.8803
X 0.3708 0.5682  0.4547 0.6516 0.4374 | 0.4977 0.4253 0.4054 04497 0.6679 0.5580 0.3874 | 0.6936
Xa 9.8139  7.1854  8.6781 59342 8.8283 | 8.2759 89912 9.1663  8.8459  5.6511 7.1934  9.2875 | 5.2926
Xr 12.227  9.2784  11.236  7.5650  11.487 10.833 11.537  11.775 11324 72433 9.5303 11.890 | 6.6039
sCD NQM SSIM  MS-SSIM  VIFP VSNR |IW-SSIM  FSIM. GSI  SW-SSIM  SIQM LTG VSI SQMS
(471 [7] [8] [13] [48] [9] [15] [16] [11] [49] (17 [18] (Pro.)

Xp 0.6837 0.8696  0.8867  0.9028 0.7050 | 0.8930  0.9019 0.8921 0.8893  0.8920 0.8789 0.8715 | 0.9059
Xs 0.6603 0.8683  0.8922  0.9043  0.7172 | 0.8990 0.9039 0.8947 0.8976  0.8953 0.8804 0.8719 | 0.9096
X 0.4749  0.6910  0.7185  0.7393  0.5383 | 0.7260  0.7331  0.7215  0.7257  0.7241  0.7009 0.6941 | 0.7470
Xa 1.3350 0.8531 0.7978  0.7082  1.1869 | 0.7837  0.7354  0.7752  0.7941  0.7862  0.8355 0.8337 | 0.6949
Xpr 1.6189  1.0953  1.0257 0.9542 1.5733 | 0.9984 09585 1.0025 1.0145 1.0030 1.0583 1.0879 | 0.9396

TABLE II: Comparison of the statistical significance of our designed SQMS and 12 IQA algorithms on the SIQAD and SCD databases.

SIQAD NQM SSIM MS-SSIM VIFP VSNR IW-SSIM | FSIM, GSI SW-SSIM SIQM LTG VSI
Index +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
SCD NQM SSIM MS-SSIM VIFP VSNR IW-SSIM | FSIM. GSI SW-SSIM SIQM LTG VSI
Index +1 0 0 0 +1 0 0 0 0 0 0 +1

coding structure, and three new concepts (namely, coding
unit, prediction unit and transform unit), and screen content
compression (SCC), which is extended from HEVC with a
4:4:4 color format to enhance the coding efficacy on screen
content through a series of advanced strategies, e.g., intra block
copy and transform skipping. In each coding technology, we
consider 11 quality levels from 30 to 50 at an interval of 2.

During the testing process, similar to the SIQAD database,
the practical SS subjective testing methodology [46] is also
used. For each testing image, 20 inexperienced observers were
invited at a viewing distance of 2-2.5 times the screen height
to offer their personal quality ratings by choosing one option
on a 10-level discrete scale, in which the ten quality scales
from the smallest to largest scores were successively labeled
to be “Bad (1, 2)”, “Poor (3, 4)”, “Fair (5, 6)”, “Good (7, 8)”
and “Excellent (9, 10)”. Before the subjective test began, each
inexpert subject was to have undergone a particular training
session with several examples compressed by representative
quality indices. As shown in Fig. 10, under the assumption of
a 95% confidence level, the distribution of confidence intervals
with respect to all the MOS values mainly ranges from 0.2 to
0.3. The final MOS value of each image in the SCD database
ranges from 1 to 9.9.

B. Testing Metrics and Evaluation Protocols

A comparison is conducted between our SQMS model and
twelve IQA metrics. The first group of testing algorithms is
composed of five classical quality metrics: 1) Noise quality
measure (NQM) [47], built upon Peli’s contrast pyramid; 2)
SSIM [7], comparing the original and distorted images in
terms of luminance, contrast and structural information; 3)
Multi-scale SSIM (MS-SSIM) [8], performing SSIM at each
scale followed by integration with distinct weights acquired
from a psychophysical test; 4) Pixel-based visual information
fidelity (VIFP) [13], defined to be the ratio of the mutual
information between the original and distorted images to the

self-information; 5) Visual signal-to-noise ratio (VSNR) [48],
estimating the visual fidelity of natural images based on near-
threshold and suprathreshold properties of human vision.

The second group contains seven state-of-the-art measures,
which have achieved high prediction performance for a broad
field of distortion categories. They are the following: 1)
Information content weighted SSIM (IW-SSIM) [9], structural
similarity weighted SSIM (SW-SSIM) [11] and structure-
induced quality metric (SIQM) [49], using IQA frameworks
to weight visual quality evaluations; 2) Color-based feature
similarity index (FSIM.) [15] and gradient similarity index
(GSI) [16], based on the fact that the HVS perceives an
image mainly with low-level features, e.g., gradient and phase;
3) Local-tuned-global model (LTG) [17] and visual saliency-
induced index (VSI) [18], systematically pooling global and
local degradations to predict the overall quality score.

The calculation of the performance measures for IQA meth-
ods requires a regression procedure to reduce the nonlinearity
of the predicted scores. We apply logistic regression for the
nonlinear regression [50]:

1 1

27 T BB (13)

f(u)51< )+ﬂ4u+55
where v and f(u) are, respectively, the original IQA scores
and the mapped scores after the regression according to the
subjective ratings; 31 to (5 are regression model parameters
that are determined during the curve fitting process. After the
regression, five representative correlation performance indices
are computed according to [50]. The first index is the Pearson
linear correlation coefficient (X'p) between the mapped quality
scores and the subjective ratings for the prediction accuracy.
The second and third indices, for evaluating the prediction
monotonicity, are the Spearman rank order correlation coef-
ficient (Xs) and Kendall’s rank-order correlation coefficient
(Xk) between the objective and subjective quality scores,
which are immune to the logistic regression. The fourth and



TABLE III: Performance comparison of the SSIM/GSIM metric and the weighted metrics on the SCD and SIQAD databases.

SIQAD database Xp Xg X Xa XRr SCD database Xp Xg X Xa Xr
GSIM 0.7761  0.7865 0.5844 | 7.0559  9.0264 GSIM 0.8776  0.8789  0.6979 | 0.8447 1.0634

Weighted GSIM | 0.8872  0.8803  0.6936 | 5.2926  6.6039 Weighted GSIM | 0.9059 0.9096 0.7470 | 0.6949  0.9396
SSIM 0.7615 0.7583 0.5682 | 7.1854 9.2784 SSIM 0.8696 0.8683 0.6910 | 0.8531 1.0953

Weighted SSIM | 0.8774 0.8669  0.6799 | 5.4115 6.8680 Weighted SSIM | 0.8931  0.8962  0.7249 | 0.7832  0.9981

TABLE IV: Performance evaluations of each dataset in the SIQAD database. We highlight the top IQA technique in boldface.

IW-SSIM [9] FSIM. [15] GSI [16] SW-SSIM [11] SIQM [49] VSI [18] SQMS (Pro.)
SIQAD database Xp X Xp Xs X5 Xs Xp Xg Xp Xs Xp Xsg Xp Xs
GN dataset 0.888 0.874 | 0.888 0.875 | 0.851 0.843 | 0.892 0.877 | 0.891 0.871 | 0.884 0.866 | 0.900 0.886
GB dataset 0908 0906 | 0.823 0.822 | 0.883 0.880 | 0.843 0.837 | 0.924 0.923 | 0.850 0.850 | 0913 0.915
MB dataset 0.842 0.842 | 0.737 0.731 | 0.775 0.776 | 0.734  0.734 | 0.859 0.858 | 0.766  0.766 | 0.867  0.869
CC dataset 0841 0.756 | 0.820 0.706 | 0.817 0.734 | 0.827 0.754 | 0.786  0.693 | 0.774 0.646 | 0.803  0.695
JPEG dataset 0.800 0.798 | 0.676  0.678 | 0.677 0.680 | 0.715 0.715 | 0.808 0.811 | 0.715 0.720 | 0.786  0.789
JP2K dataset 0.804 0.799 | 0.713 0.697 | 0.724 0.712 | 0.719 0.705 | 0.821 0.811 | 0.750 0.730 | 0.826 0.819
LSC dataset 0.816 0.821 | 0.704 0.707 | 0.723 0.717 | 0.706 ~ 0.698 | 0.795 0.806 | 0.746  0.742 | 0.813  0.829

fifth indices are the average absolute error (X'4) and root mean
square error (Xr) used to measure the prediction consistency.
Of the five indices stated above, a value close to 1 for Xp,
Xs and X and near to O for X4 and X'z denotes superior
correlation with human perceptions.

C. Performance Comparison and Statistical Significance

As listed in Table I, we tabulate the performance measures
of 13 IQA models on the SIQAD and SCD databases. The
best-performing algorithm is highlighted in bold font. The
proposed SQMS metric has acquired the highest indices for
Xp, Xg, and Xk, and the lowest indices for X4, and Xr and
thus achieves superior performance compared to the classical
and state-of-the-art testing methods. On the SIQAD database,
only our IQA method achieves scores greater than 0.88 for
Xp and Xg and greater than 0.69 for Xk, but lower than 5.5
for X4 and lower than 7.0 for X'z. Relative to the benchmark
SSIM metric, the performance of our SQMS method exceeds
16% in terms of performance accuracy and monotonicity.
Further, in contrast to the second-ranking SIQM in terms of
performance, the performance gain of our SQMS method is
greater than 2.8% in terms of performance accuracy and 2.5%
in terms of performance monotonicity. For the other SCD
database, our metric yields scores as high as 0.9 for A'p and
Xg, about 0.75 for Xk, lower than 0.7 for X4, and lower than
0.95 for Xr. Compared with the benchmark SSIM metric, our
SQMS yields a higher than 4% gain for performance accuracy
and 4.5% gain for performance monotonicity.

Apart from the five frequently used evaluations above, the
outlier ratio is also applied to obtain confidence intervals from
subjective experiments for the performance comparison of the
objective IQA metrics. Specifically, after the regression, the
differences between the converted objective scores and sub-
jective ratings are first computed, and then, the outlier ratio is
defined as the number of differences outside of the confidence
intervals to the number of images in total. A smaller outlier
ratio means a better IQA model. We have calculated the outlier
ratios for the three best-performing metrics, i.e., SQMS, SIQM
and VIFP, and the results demonstrate the superiority of our
SQMS metric.

TABLE V: Performance measures on the HEVC and SCC datasets
in the SCD database.

HEVC dataset SCC dataset

SCD database X5 Xs X s X X
IW-SSIM [9] 0.899 0.899 0.719 | 0.885 0.895 0.732
FSIM, [15] 0901 0.901 0.722 | 0.897 0.906 0.744
GSI [16] 0.902 0903 0.723 | 0.878 0.884 0.720
SW-SSIM [11] | 0.883 0.889 0.708 | 0.890 0.904 0.747
SIQM [49] 0901 0.904 0.728 | 0.877 0.883 0.719
VSI [18] 0.856 0.854 0.660 | 0.895 0903 0.744
SQMS (Pro.) 0915 0917 0.756 | 0.892 0.900 0.740

The statistical significance obtained from comparing the
prediction residuals of each testing IQA approach after the
regression is also determined. We suppose that the prediction
residuals of IQA measures follow the Gaussian distribution
and thus use the F-test to compute the residuals of our SQMS
metric and each IQA model. Assuming a significance level
of 0.05, a value of H = 41 indicates that our technique
is statistically better than the tested model, while a value of
H = —1 indicates that our technique is statistically worse
than the tested technique. A value of H = 0 concludes that
our technique is statistically comparable with the IQA model
tested. The results for the SIQAD and SCD databases of the
statistical significance comparison are listed in Table II. For the
first SIQAD database, the results are all “+1”, which means
that the proposed model is statistically better than the overall
IQA metrics considered in this work. For the second SCD
database, our SQMS metric is also superior or equivalent to
the IQA models tested in terms of statistical significance.

The contribution and generality of the proposed saliency-
based weighting model should be verified. First, we measured
the contribution of the saliency map on the SIQAD and SCD
databases, as tabulated in Table III. The GSIM metric is
defined as the global mean of the GM similarity map G.
By comparison, the weighted version based on the saliency
map W always enhances the GSIM metric to a large extent.
For the SIQAD database, the performance gain is as high as
14% for Xp, 11% for Xs and 18% for Xk . For the SCD
database, the performance gain is also greater than 3.2% for
Xp, 3.4% for Xs and 7% for Xx. Second, we replace the
GSIM metric with the traditional SSIM metric to verify the



100
90 90
80| 80,

70, 70

60| 60!

GN
GB
MB
cc
JPEG
JP2K
LsC

® GN
= GB
+ MB
A CC
v JPEG
> JP2K
< LsC

DMOS
DMOS

50 50,

40 40

4>ene

30| 30,

® GN
= GB
+ MB
4 cC
v JPEG
> JP2K
4 LsC

DMOS

03 04 05 “6s 04 05

100
90|
80|
70|

® GN
= GB
¢+ MB
4 CC
v JPEG
> JP2K
4 Lsc

DMOS
DMOS

50
40
30|

06 07
MS-SSIM

0.8 1 1

® GN
= GB
+ MB
4 CC
v JPEG
> JP2K
LsC

DMOS

“62 03 04 05

® GN
= GB
¢+ MB
A CC
v JPEG
> JP2K
4 Lsc

DMOS
DMOS

IW-

06 07

SSIM

08

DMOS

088 2 03 04 05
100,
90|
80|

70|

60 GN

® GN
= GB
¢ MB
4 cC
v JPEG
- JP2K
4 LsC

DMOS
DMOS

50| MB

cc
JPEG
JP2K
Lsc

40
30)

Av4abene

SW-SSIM

06 07 08

DMOS

‘64 05 06 08 8 084 088

07
LTG

092
VSI

06 08

07
SQMS

Fig. 11: Scatter plots of DMOS versus SSIM, MS-SSIM, VIFP, VSNR, IW-SSIM, FSIM,, GSI, SW-SSIM, SIQM, LTG, VSI and our SQMS
metrics on the SIQAD database. GN: Gaussian noise (red); GB: Gaussian blur (green); MB: motion blur (blue); CC: contrast change (cyan);

JPEG: JPEG compression (magenta); JP2K: JPEG2000 compression (

generality of the saliency detection model. As can be seen
from Table III, the weighted SSIM metric?> achieves a high
degree of performance improvement over the original SSIM
metric, about 15%, 14% and 19% for Xp, Xg and X on the
SIQAD database as well as 2.7%, 3.2% and 4.9% for Xp, Xg
and Xk on the SCD database, respectively. Furthermore, the
statistical significance is also compared between the weighted
SSIM/GSIM metric and the associated SSIM/GSIM metric.
The results show that the weighted SSIM/GSIM is statistically
better than the original version on SIQAD and is statistically
superior/comparable to the original version on SCD.

In addition to the overall performance on the entire screen
content database, we further conducted a comparison of all the

2The convolution window used in the weighted SSIM metric is assigned to
be 5 X 5 in size for better capturing the variations in the texts of thin lines.

yellow); LSC: Layer Segmentation-based Coding (orange).

testing IQA measures on each individual distortion type. For
the SIQAD database, two of the most important indices for
performance accuracy and monotonicity (Xp and Xg) were
used. As mentioned above, there are seven distortion types in
the SIQAD database. We separately present the results for the
seven recent IQA methods in Table IV, and indicate in bold
the best-performing method of each type for a straightforward
comparison. It can be seen that our SQMS model delivers a
fairly good performance for several categories. Our approach
clearly outperforms other computing metrics on the GN, MB
and JP2K datasets. Among the seven distortion types, our
SQMS performs the best 3 times for Xp and 4 times for
Xs, which is noticeably higher than the second-ranking SIQM
that performs the best 2 times both for X'p and X5 and the
third-ranking IW-SSIM that performs the best 2 times for Xp
and once for Xs. The results can be made more satisfactory



TABLE VI: Computational cost (in seconds/image) of our SQMS and twelve IQA techniques on the overall SIQAD database.

Metrics

NQM

SSIM

MS-SSIM

VIFP

VSNR

IW-SSIM

FSIM.

GSI

SW-SSIM

SIQM

LTG

VSI

SQMS

Time (s)

0.556

0.084

0.135

0.210

0.370

0.738

0.615

0.032

13.67

0.163

0.053

0.232

0.096

TABLE VII: Performance measures of our SQMS and eight saliency-based metrics on the SIQAD database.

SIQAD AIM-GM QTF-GM NRF-GM FES-GM SR-GM FT-GM 1S-GM HFT-GM SQMS
[30] [31] [32] [33] [35] [36] [37] [38] (Pro.)
Xp 0.8073 0.8163 0.7877 0.7784 0.7472 0.7707 0.7647 0.7830 0.8872
Xg 0.8167 0.8235 0.7962 0.7820 0.7497 0.7768 0.7722 0.7895 0.8803
Xk 0.6171 0.6235 0.5956 0.5853 0.5502 0.5763 0.5750 0.5912 0.6936
TABLE VIII: The sensitivity test of the four parameters in our SQMS model on the SIQAD database.
n 7 9 11 13 15 o 1.5 3.5 5.5 7.5 9.5
Xp | 0.8863 0.8877 0.8872 0.8859  0.8841 Xp | 0.8795 0.8872 0.8872 0.8872  0.8871
Xs | 0.8776 0.8802 0.8803 0.8787 0.8763 Xs | 0.8691 0.8800 0.8803 0.8804 0.8804
X | 0.6905 06934 0.6936 0.6917 06890 | | Xx | 0.6811 0.6935 0.6936 0.6936 0.6936
t 5 7 9 11 13 0 -5 -2 1 4 7
Xp | 0.8808 0.8857 0.8872 0.8867 0.8861 Xp | 0.8850 0.88064 0.8872 0.8855 0.8845
Xsg | 0.8720 0.8778 0.8803 0.8807  0.8809 Xg | 0.8792 0.8800 0.8803 0.8796 0.8791
Xi | 0.6841 0.6908 0.6936 0.6933  0.6933 Xg | 06913  0.6930 0.6936 0.6919  0.6910

by modifying the devised weighting scheme in terms of the
distortion intensities and categories. We also use three indices
for performance accuracy and monotonicity (Xp, Xg and X'x)
to compare our SQMS and recently developed IQA measures
on the HEVC and SCC datasets in the SCD database. The
results in Table V illustrate that the proposed SQMS model
delivers a substantially high correlation performance.

D. Computational Cost and Visualized Comparison

The computational cost is another important performance
index because high-volume visual data that are compressed
and transmitted are assessed and monitored at every instance.
Table VI lists the average running time for all the 980 images
in the SIQAD database. MATLAB R2010a (7.10.0) on a
computer equipped with a 3.40 GHz CPU processor and 4.00
GB of RAM was used in this test. It can be seen that our
SQMS approach requires less than 0.1 seconds, which is
comparable to the benchmark SSIM metric.

The scatter plots of the human ratings versus the objective
quality scores of 12 testing IQA techniques on the SIQAD
database are shown in Fig. 11 for a visual comparison. The
methods used are SSIM, MS-SSIM, VIFP, VSNR, IW-SSIM,
FSIM,, GSI, SW-SSIM, SIQM, LTG, VSI and our devised
SQMS metrics. In each scatter plot, we use distinct colors
to label the sample points associated with various distortion
categories: red for GN, green for GB, blue for MB, cyan
for CC, magenta for JPEG, yellow for JP2K, and orange for
LSC. A good IQA model has the ability to predict the visual
quality consistently across distinct types of distortions. As
displayed in Fig. 11, the scatter plot shows that our SQMS
is more robust across distortion types and thereby has better
performance consistency. Especially for the contrast change
data set, the sample points of the proposed SQMS are near
the other six distortion types, while the sample points for most
testing IQA algorithms are relatively far from the other six
types. Therefore, the proposed IQA model can yield a high
performance index.

E. Impact of the Different Saliency Detection Models

From another viewpoint, our proposed weighting strategy
has a function similar to visual saliency. Eight representative
visual saliency detection models, including AIM [30], QTF
[31], NRF [32], FES [33], SR [35], FT [36], IS [37] a