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Abstract—Tracking the object with stable features is an 
important and challenging task in real scenes where the object 
appearance constantly changes or is disturbed by the background 
etc. In this paper, a novel frame work of object representation 
and tracking based on stable feature mining is presented. Firstly, 
the object region is adaptively detected and then the peak 
contour of V color component histogram in the object region is 
extracted to calculate candidate and region peaks which are used 
for acquiring the number of clusters and further classifying the 
object appearance. Secondly, the connection subregions 
belonging to every cluster are described with observation and 
increment models, and subregions association between the object 
template and the current observation is then utilized to mine 
stable subregion pairs and get feature change ratios. Finally, 
stable subregion displacements are weighted fused to locate the 
object in the current frame, and the object template is updated in 
terms of average increment variations. Experimental results 
show the excellent performance of the proposed algorithm in 
cluster number adaptivity, robustness in stable feature mining 
and accurateness in object tracking. 

Keywords- adaptively clustering; observation and increment 
representations; subregions association; stable features mining; 
object tracking 

I. INTRODUCTION 

Modeling the object with sparse and reliable features to 
enhance the object representation power and efficiency is very 
critical in many computer vision applications such as action 
retrieval [1], object recognition [2], detecting and tracking 
[3][4]. However, object features are not invariant in the 
unconstrained environment, which make the current object 
observation be slightly or severely inconsistent with the 
predetermined object model, lead to the object missing, and 
ultimately degrade the accurateness of real applications such as 
intelligent traffic surveillance [5], medical image understanding 
[6] and Unmanned Aerial Vehicle surveillance [7] systems. 
Therefore, robustly and efficiently modeling and tracking the 
object are still an area of active research. 

To cope with these problems, a number of elegant 
algorithms have been established to endow the object model 
with strong discriminative power, such as color histogram [8] 
and correlogram [3], shape [9], spatio-temporal [10] and edge-
color [4] contexts, and local dynamic sparse model [11] based 
object feature representations. Among of them, image and 
video data mining based feature extracting algorithms attract 
much notice and obtain remarkable results. Image mining deals 
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with the acquirement of implicit knowledge, image data 
relationship or other patterns not explicitly stored in the image 
[6][12]. Clustering as one of the unsupervised image mining 
techniques, can group unlabelled raw images into meaningful 
classes, dispatch the heterogeneous data into different groups 
[13] or mine visual patterns according to the image content 
without the priori knowledge [14-15], so clustering is very 
useful in finding robust features for further efficiently 
modeling the target object. K-means clustering [16] is very 
effective in highlighting the main color or texture features etc 
while providing dimensionality reduction on the original data, 
but it need set the cluster number in advance. Plant et al. [6] 
presented the interaction K-means to cluster the functional 
magnetic resonance image with the pre-set cluster number for 
brain function understanding. Video mining can extract the 
moving object features, spatial or temporal correlations of 
those features [2], discover the object activity and event [5], 
and track the object [17-18] etc without little assumption about 
video contents. Association as an important video mining 
method can get related information or discover two features, or 
objects that always occur simultaneously etc. Yang et al. [17] 
discovered auxiliary objects, i.e. a set of color regions which 
were temporally stable and spatially correlated to the target 
object in a video sequence, by learning their co-occurrence 
associations and estimating affine motion models in an 
unsupervised way. And then these auxiliary observations were 
used to track the target object whose current observation was 
unreliable due to occlusion or background disturbance etc. 
Grabner et al. [18] mined supporters which were temporally 
but useful for tracking the object from the embedded context 
and dealing with the occlusion in real scenarios. Zhang et al. 
[5] learned and mined the object-specific context and the 
scene-specific context informations to improve the robustness 
of objects (pedestrians and vehicles) classification and objects 
tracking based abnormal event detection. Nevertheless, every 
method mainly deals with one or several special problems, so 
to realize accurately and robustly feature mining and object 
tracking under any scenes still has a long way to go. 

In this paper, clustering and association are combined to 
mine stable object features and track the object in image 
sequences. The S and V color components (in HSV color space) 
in the object region detected with adaptive background 
difference are classified by the adaptive cluster number based 
K-means clustering. The connection subregions of every 
cluster are then labelled and modeled. To mine stable 
subregions, the observation model is associated with the object 
template in terms of the multi-feature distances and change 
ratios. The increment model is utilized to real-timely calculate 
the feature variations and update the object template. To obtain 
the object position in the current frame, the center 
displacements of stable subregions are weighted fused. The 
results from the experiments illustrate that the proposed 
method can continuously mine stable subregions and robustly 
track the object in real unconstrained scenarios. 
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Four main contributions are summarized below: 1) we 
establish a new stable feature mining based object 
representation and tracking framework. 2) a new cluster 
number acquiring technology is explored. 3) local subregion 
observation and increment representations are proposed which 
are more efficient in handling the partial appearance variation 
and loss. 4) our tracker performs better than the color 
histogram based Mean shift [8] and recently developed the 
spatio-temporal context [10] based trackers on relevant image 
databases. Compared with the previous works, to the best of 
our knowledge, this paper is the first to propose a clustering 
and association based stable feature mining and object tracking 
framework. In addition, our algorithm obtains a high 
performance. 

The rest of this paper is organized as follows: Section 2 
summarizes the presented object representation and tracking 
method. Section 3 proposes object representation and stable 
feature mining algorithms. Section 4 describes the object 
tracking algorithm. Section 5 gives experimental results and 
comparisons. Finally some conclusion and discussion are 
presented in Section 6. 

II. THE OVERVIEW OF THE PROPOSED ALGORITHM  

The flow chart of the proposed algorithm is shown in 
Figure 1. 

tI

1t +I

 

Figure 1. The flow chart of the presented algorithm. 

In video based automatic object recognition and tracking, 
the object region is often extracted to decrease the searching 
cost and restrain the background disturbance etc. Similarly, the 
adaptive background difference here is firstly employed to 
extract the object region. And then the peak contour of V 
component histogram in the object region is utilized to 
compute the cluster number. K-means clustering is then 
adopted for classifying the object appearance. The 8-
connection subregions of every cluster are used to build 
observation and increment representations. Furthermore, 
subregions association between the observation model and the 
object template is used to mine the stable subregion pairs and 
get feature change ratios. Finally, the center displacements of 
the stable subregions are weighted combined to derive the 
object displacement and trajectory in the current frame, and the 
object template is real-timely updated to adapt to gradual 
illumination change, and object pose and scale variations etc. 

III. OBJECT REPRESENTATION AND STABLE FEATURE 

MINING 

A.  Cluster Number Acquiring and Intraframe Clustering 

Let ( )tI x  be the current image as in Figure 2(a). The object 

image ( )tO x  is detected with the adaptive threshold based 
background difference [19], and shown in Figure 2(b). 

( )= ( )t tO x I x  and 0 represent the object pixel and the 
background pixel respectively. t is the frame number and x  
describes the pixel coordinate.   

Since S and V components are independent of color 
information and much more easily processed than in RGB 
space, we use them to cluster the object appearance. Figure 
2(c) shows S and V component histogram contours of ( )tO x . 
Obviously V contour only reflects one main peak while S 
contour embodies the distinctions of different clusters with 
multiple main peaks which represent car outside and shadow 
etc. Hence, the V component histogram is adopted to compute 
the cluster number tK  as follows. 

Step 1. Smooth the V component contour to highlight the 
main peak values ( MPVs ) (red solid line in Figure 2(d)). 

Step 2. Judge MPVs  as the candidate ones when 
MPVs MEANβ≥ ⋅   (blue solid line). β  is a scale factor and 
MEAN  (blue dash line) represents the average value of MPVs.   

Step 3. Sum the MPVs  which are lower than MEAN  to 
obtain the residual energy, and then compute the percentage of 
the residual energy from the total number of MPVs  to get the 
residual ratio tRES . 

Step 4. Calculate the absolute peak values difference 
APVD  between the adjacent candidate peaks, and judge the 

candidate peaks as the region peaks when 1APVD α> , 
otherwise retain the maximum peak to compare with the next 
candidate peak and repeat Step 4. 

Step 5. Obtain the cluster number tK  by accumulating the 

number of region peaks. When 2tRES α> , there need to add a 

cluster, i.e. 1t tK K⇐ + . 

To classify ( )tO x , the S and V components ( )tV x  and 

( )tS x  in ( )tO x  are reshaped line by line into a 2M ×  sample 

intensity matrix ( )t nΓ . Then, ( )t nΓ  is clustered using K-

means algorithm with tK  and the Euclidean distance as a 

dissimilarity metric to gain a 2M ×  clustered matrix ( )t nD . 

M  is the total number of object pixel and [ ]1,n M∈ .  

                   
     (a)                                                       (b) 

 
 (c)                                                      (d)  

Figure 2. The S and V component contours of the object image. (a) the original 
image; (b) the object region; (c) the component contours; (d) the filtered peaks 

contour of the V component. 

 
                          (a)                   (b)                     (c)                    (d) 

Figure 3. The original images and classified results in different frames.  
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Finally, ( )t nD  is mapped to ( )t xO  according to the one-

to-one relationship between n  and x , and very cluster is 
represented with a pseudo-color as in Figure 3. Figure 3(a) and 
(c) illustrate the original images, and (b) and (d) are the 
clustered results of the object regions in frames 230 and 239 
respectively. The cluster numbers in two frames are both 3. 

B. Subregion Representation and Stable Feature Mining 

In real scenarios, illumination, object pose and scale 
variations etc, can alter the clustered result, such as the cluster 
area increasing and the cluster center moving as in Figure 3(b) 
and (d). Thus, it is very important to extract the stable and 
robust object features even if they are sparse or exist 
momentarily. Figure 4 illustrates the local subregion 
comparisons between frames 230 and 239, where the 8-
connection subregions belonging to each cluster are calculated 
and labelled with the numerical orders, and every subregion 
center position is marked with the '+' (plus) character. In Figure 
4(a), the cluster marked with red, green and blue correspond to 
subregions 1~3, subregions 4~9 and subregions 10~14 
respectively. Meanwhile, the cluster marked with red, green 
and blue in Figure 4(b) correspond to subregions 1~3, 
subregions 4~15 and subregions 16~24 respectively. 

There are obviously associations between Figure 4(a) and 
(b), e.g. subregion 8 (skylight glass labelled with green) in 
frame 230 and subregion 9 in frame 329, and subregion 10 
(shadow) in frame 230 and subregion 16 in frame 239. These 
related subregions contain the rules of object appearance, 
position and scale variations etc. Thus, they can be regarded as 
important clues for modeling and tracking the object. 
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(a)                                                     (b) 

Figure 4. Connection subregions comparing. (a) and (b) are the labelled object 
regions in frames 230 and 239 respectively. 

Let { }1 1 1 1
, , ,, ,r r r r

t t A t tE E E= x CE  be the r1-th subregion template, 

{ }1 1 1 1
, , ,, ,s s s s

t t A t tF F F= x CF  denote the s1-th subregion observation 

model, and { }1 1 1
_ , _ ,,r r r

t A ratio t ratio tE EΔ = Δ Δ CE describe the r1-th 

subregion increment model. { }, , ,
ˆ ˆ ˆ ˆ, ,m m m m

t t A t tF F F= x CF  and 

{ }, , ,
ˆ ˆ ˆ ˆ, ,m m m m

t t A t tE E E= x CE  stand for the m-th stable subregion pair 

( )ˆ ˆ,m m
t tF E  mined from 1s

tF  and 1r
tE . The subscripts 

{ }, , , , _A S V A ratio=x C  and _ ratioC  represent the 

subregion center coordinate, area, color (S and V), area and 
color change ratios respectively. [ ] [ ]1 1, 1 , 1 1, 2r N s N∈ ∈  and 

[ ]1, 3m N∈  are the subregion numbers of 1r
tE , 1s

tF  and ˆ m
tF  

respectively. 1
,

r
V tE  is computed via Eq. (1). Similarly, 1 1

, ,,r s
S t S tE F  

and 1
,

s
V tF  are obtained. 

To automatically find the associated subregions in image 
sequence, the template difference 1 1 1r r s

t t t= −Δ E F  is firstly 

computed. And the center distance 1
,

r
tdx , the area change ratio 

1
_ ,

r
A ratio tEΔ  and the color change ratio 1

_ ,
r

ratio tEΔ C  are further 

calculated via Eqs. (2)～(4) respectively. 
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Then, subregions association is used to mine ˆ m
tF  and ˆ m

tΕ , 

and obtain the stable increment { }_ , _ ,
ˆ ˆ ˆ,m m m

t A ratio t ratio tE EΔ = Δ Δ CE  

via Eq. (5). The stable subregion difference ˆ ˆ ˆm m m
t t t= −Δ E F  is 

further computed. ( ) ( )
1 1

1 12 2
, ,max ,r s

t A t A tE Fμ
  =  
  

 is an adaptive 

threshold, 1λ and 2λ  are constant thresholds.  

{ }
{ } { }
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1 1 1 1 1 1

1 1 1
, _ , 1 _ , 2
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, , , , :
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m m m
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Δ Δ =

≤ Δ ≤ Δ ≤x C

E F E

E F E E F E

 

           (5) 

IV. OBJECT TRACKING 

It is assumed that the current object template 1r
tE  is 

updated with the stable subregions mined in frame t-1, the 

center displacement ,
ˆ m

tΔx  between ˆ m
tΕ  and ˆ m

tF  will directly 

reflects the motion rules of the object in neighbor frames. To 
obtain the object trajectory tx , the average template increment 

{ }, , ,= , ,t t A t tΔ Δ Δx CΔ  is computed by weighted fusing ˆ m
tΔ  via 

Eq. (6), where ,
ˆ m

A tE  is used to increase the voting power of the 

subregion being with larger area and vice versa. Then tx  is 

acquired in terms of ,tΔ x , the historical trajectory 1t −x  and the 

detected center trajectory det ect
tx  of ( )tO x  as Eq. (7).  

3

,
1

3

,
1

ˆˆ

=
ˆ

N
m m
A t t

m
t N

m
A t

m

E

E

=

=

⋅



Δ
Δ                                   (6) 

( ) ( ) det
1 , 1 ect

t t t tγ γ−= ⋅ − Δ + − ⋅xx x x                (7) 
In addition, the subregion area variations in adjacent frames 

are almost with similar rule, i.e. simultaneously increasing or 
decreasing, hence we utilize the average area change ratio 

_ ,A ratio tΔ  of stable subregions to update 1
,

r
A tE  including of those 

unstable subregions without directly data source for self-
renewaling. _ ,A ratio tΔ  is calculated via Eq. (8).  
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1r
tE  is updated according to Eqs. (9)～(11), where SIGN  

denotes the  plus-minus sign of _ ,A ratio tΔ . Since ,
ˆ m

tΔx  has larger 

variation in those subregions being with larger areas and is 

roughly proportional to 
1

2
_ ,

ˆ m
A ratio tEΔ , we update 1

,
r

tEx  by taking 

into account ,tΔ x  and _ ,A ratio tΔ  as Eq. (9). Similarly, ,A tΔ  and 

_ ,A ratio tΔ  are applied to acquiring 1
, 1

r
A tE +  as Eq. (10). To deal 

with gradual illumination variation, the average color 
translation ,tΔ C  here is employed to update 1

,
r

tEC  via Eq. (11). 
3

_ , ,
1

_ , 3

,
1

ˆ ˆ

=
ˆ

N
m m
A ratio t A t

m
A ratio t N

m
A t

m

E E

E
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Δ


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                                   (8) 

1
1 1 2
, 1 , , _ ,1r r
t t t A ratio tE E SIGN+

 
= − Δ ⋅ − ⋅ Δ 

 
x x x                      (9) 

( )1 1
, 1 , , _ ,1r r

A t A t A t A ratio tE E+ = − Δ ⋅ − Δ                               (10) 
1 1
, 1 , ,

r r
t t tE E+ = − ΔC C C                                        (11) 

V.         EXPERIMENTAL RESULTS 

To evaluate our method, two image sequences in traffic 
scenes, containing gradual illumination and object scale 
variations, lower resolution appearance and background 
disturbence etc are employed to show robustness of feature 
mining and object tracking. As to the control parameters, all 
simulations were obtained empirically setting [ ]1.3,1.4β ∈ , 

1 15α = , [ ]2 0.35,0.45α ∈ , 1 0.3λ = , 2 0.1λ =  and 0.8γ = . We 

run the proposed tracker, the Mean shift (MS) tracker [8], and 
the spatio-temporal context (STC) tracker [10] on those testing 
data, respectively. Some examples are presented in Figures 
5~10. The round marks in Figures 5 and 8 are the initial object 
trajectories, and the round marks in Figures 6, 7, 9 and 10 
denote the tracked object locations. 

A. Stable Features Mining and Object Tracking  

Figure 5 illustrates the process of acquiring the initial object 
template in image sequence 1. Figures 5(a) and (b) are the 
original image and the detected object region of frame 230 
respectively, where the object is with the size 85×59, 3 clusters 
and 14 subregions. The object template is scaled up in Figure 
5(c) and the subregions are numbered so as to conveniently 
describe the processes of stable features mining and object 
tracking as shown in Figure 6. The initial object trajectory (the 
white round mark) in Figure 5(b) and (c) is the center position 
of the object region including of the shadow. Since the shadow 
has the same moving with the object and may be an important 
clue under the case of the main body of the object is occluded 
or disturbed, here it is regarded as a part of the object.  

The results of stable feature mining and object tracking 
under gradual illumination variation, and object scale and 
resolution changes are presented in Figure 6. Row 1 shows the 
clustered results of frames 231, 235, 239, 241 and 243. The 
object scale changes gradually when the object approaches the 
camera and more appearance details are displayed, which leads 
to the corresponding changes in clustered results and 
subregions numbers. The 8-connection subregions in row 1 are 
labelled from left to right with the total numbers of subregions 
being, in order, 21, 24, 38 and 33 respectively. The subregions 
number decreases in frame 243 due to the object being about to 
leave from the field of view and only the partial object body 
being detected. Row 2 demonstrates the mined stable 
subregions marked with the same colors and '+' characters as 
row 1. The total numbers of stable subregions from left to right 
are, in order, 7, 5, 2, 2 and 1 respectively. 
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(a)                         (b)                                      (c) 

Figure 5. The initial object template in image sequence 1. (a) the original 
image; (b) the labelled subregions; (c) the scaled up and numbered subregions. 

              
Figure 6. Stable feature mining and object tracking in image sequence 1. (Row 1 is clustered and labelled subregions; row 2 is mined stable subregions and 

tracked results.) 
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Figure 7. The tracked results with STC and MS algorithms in image sequence 1. (Rows 1 and 2 are STC and MS algorithms respectively.) 

The stable subregion centers are further fused to locate the 
object trajectory (the white round dot) in the image sequence as 
in row 2. In frames 231 and 235, the stable subregions such as 
subregions 10 (shadow) and 12 (windshield), almost covering 
the total object region and most of the stable subregions, 
provide reliable and powerful supports for object locating. In 
frames 239 and 241, the object scale and 
velocity increase quickly, only two stable subregions (such as 
the car body labelled with subregion 7) are mined. However, 
the object still is tracked robustly in absence of most of object 
appearance. The tracking effectiveness is further reflected in 
frame 243, where the detected object is incomplete and only 
one stable subregion (windshield) is utilized to locate the object. 

The tracked object trajectories of STC and MS algorithms 
are given in Figure 7. STC tracker can accurately locate the 
specific object position (the green round dot) during the object 
moving (except frame 243), but it could not perceive the object 
appearance loss and adjust the object model to obtain the valid 

object center in the partial object region. Since the object center 
changes simultaneously along with the object moving and the 
partial body loss, the scale and template updates in MS tracker 
cannot pursue these accelerated variations and ultimately cause 
trajectory drift (the purplish red round dot). The same problem 
happens to STC tracker in frame 243, where the retarded scale 
update causes the trajectory lag. By comparison, our tracker 
can robustly locate the object trajectory in terms of clues 
provided by the stable subregion features under this case.    
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(a)                                       (b)                                     (c) 

Figure 8. The initial object template in image sequence 2. (a) the original 
image; (b) the labelled subregions; (c) the scaled up and numbered subregions. 

 
Figure 9. Stable feature mining and object tracking in image sequence 2. (Row 1 is clustered and labelled subregions; row 2 is mined stable subregions and 

tracked results.) 

                  
Figure 10. The tracked results with STC and MS algorithms in image sequence 2. (Rows 1 and 2 are STC and MS algorithms respectively.) 
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Figure 8 shows the initial object template with the size 
154×70, 2 clusters and 7 subregions, extracted from frame 120 
(Figure 8(a)) in image sequence 2. Similarly, the clustered 
subregion centers and the initial object trajectory (the round 
mark) are given in Figure 8(b) and (c). Figure 8(c) presents the 
scaled up and numbered object subregions. 

The results of stable feature mining and object tracking 
under lower resolution appearance and background disturbance 
are described in Figure 9. Row 1 illustrates the clustered results 
of frames 124, 127, 130 and 131. In spite of the object being 
blurry and influenced by the shadow and reflection of the plant 
in the scene, such as the car roof in frames 130 and 131, our 
method can robustly cluster the object motion region. 
Furthermore, the subregion areas and numbers constantly 
change along with object moving as shown in row 1, where the 
total numbers of subregions are, in order, 7, 10, 8 and 4 
respectively. Row 2 gives the mined stable subregions marked 
with the same colors and '+' characters as row 1 with the total 
numbers of stable subregions from top to bottom being, in 
order, 2, 2, 2 and 1 respectively. In frames 124 and 127, the 
clustered result of car glass is unstable due to the background 
reflection and the object pose change, but stable subregions 1 
and 4 (car body) combined to achieve robust tracking results. 
In frames 130 and 131, although the object gradually moves 
away from the field of view, our method still keeps robustly 
tracking the partial car body, which further shows the high 
efficiency of the proposed method. 

The tracked results of STC and MS algorithms are 
illustrated in Figure 10. STC tracker still maintains the steadily 
tracking performance (the green round dot) in frames 124 and 
127. However, it could not locate the new center determined by 
the partial object body in frame 130, and gives the object 
trajectory outside of the scene in frame 131. Under MS tracker 
(the purplish red round dot), there are obvious lags in frames 
130 and 131. This is because the local object appearance loses 
and the background disturbance directly influences the color 
histogram model and the scale update. And trajectory drifting 
ultimately occurs. In contrast, the proposed tracker can obtain 
relatively accurate object trajectory depending on the stable 
subregion center displacements mined with the interframe 
association. 

B. Quantitative Comparisons and Errors Analyzing 

Figure 11 shows the trajectory comparisons between the 
tracked result { },t t tx y=x  and the ground truth { }ˆ ˆ ˆ,t t tx y=x  

(red dash and solid lines).  ˆ tx  and the object scale 

{ }, ,=t x t y th hh ,  are acquired by manual method and indicate the 

center location and scale of the object region. The trajectory 
error , ˆerror t t t= −x x x  and th  (red dash and solid lines) are 

illustrated in Figure 12. Although our trajectory slightly drifts 
from frame 240 in image sequence 1 (Figure 11(a)) and from 
frame 129 in image sequence 2 (Figure 11(b)), the relative 
error growths in both sequences are small with respect to the 
real-time object size (Figure 12). Our trajectory and STC 
trajectory along y direction (vertical) in image sequence 2 
almost coincide with the true one, while the x (horizontal) 
trajectory in STC method has larger drift than our method from 
frame 128 where the object is about to leave the field of view 
and has a sharp size decrease. MS tracker achieves a less 
trajectory error in y direction in image sequence 1, but makes 
higher errors in x direction in both image sequences. 

 
(a) 

 
                                 (b) 

 
Figure 11. Trajectory tracking comparisons. (a) image sequence 1; (b) image 

sequence 2. 

 
(a) 

 
(b) 

 
Figure 12. Trajectory errors comparing with the object scale variations. (a) 

image sequence 1; (b) image sequence 2. 

For each testing sequence, the trajectory errors statistics 
and comparisons are shown in Table 1. The average trajectory 

error 
1

1
ˆ

N

error t t
t

x x x
N =

= −  is calculated according to the 

absolute difference between tx  and ˆtx . N  is the total number 

of image frames. Similarly, the average trajectory error errory  is 
derived. The synthetical error is acquired via 

( )
1

2 2 2
error error errorT x y= +  
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The average relative error _relat errorx  of the object trajectory 

comparing with the object size ,x th  in x direction is computed 

as Eq. (12). Similarly, the average relative error _relat errory  is 

obtained by comparing with ,y th . The synthetical relative error 

is obtained according to ( )
1

2 2 2
_ _ _relat error relat error relat errorT x y= + . The 

bold numbers in Table 1 highlight the smallest errors among 

three algorithms. It is obvious that errory  and _relat errory  under 

the proposed and STC methods are almost zeroes in image 
sequence 2, and MS tracker gets the best y trajectory in image 
sequence 1. However, the proposed method obtains the 
smallest errorT  and _relat errorT  in both sequences. 

_
1 ,

ˆ1
100%

N
t t

relat error
t x t

x x
x

N h=

−
= ×                   (12) 

TABLE 1. THE TRAJECTORY ERRORS STATISTICS AND ANALYSIS (UNITS: PIXELS). 

Image 
sequence 

Algorithm errorx  errory  errorT  _relat errorx
 _relat errory

 _relat errorT
 

Image 
sequence 1 

Proposed 3.41 3.78 5.09 3.35% 4.20% 5.37% 
STC 7.68 3.96 8.64 7.56% 5.16% 9.15% 
MS 9.55 2.28 9.82 9.23% 2.75% 9.63% 

Image 
sequence 2 

Proposed 5.43 0.43 5.45 5.69% 0.63% 5.72% 
STC 10.75 0.33 10.76 12.09% 0.48% 12.10% 
MS 14.37 6.73 15.87 12.86% 9.82% 16.18% 

 

VI.  CONCLUSIONS  

In this paper, we have presented a new approach for 
adaptively clustering and mining the stable feature to deal with 
object appearance changes in unconstrained environment, and 
eventually enhance the robustness of object tracking in image 
sequence. The motion detecting, adaptive cluster number based 
K-means clustering, connection subregions modeling and 
updating, and subregions association are combined to improve 
the stable feature mining and object tracking performances. 
Experimental results demonstrate that the proposed algorithm 
shows favourable cluster number adaptivity, and achieves 
robustly feature mining and efficiently object tracking. 
Although the results are promising in certain situations, further 
evaluation is anticipated in more complicated image sequences. 
We have implemented all of the experiments without code 
optimization. Real-timely tracking will be realized in further 
development. 

REFERENCES 
[1] L. J. Cao, R. R. Ji, Y. Gao, W. Liu, and Q. Tian, “Mining 

Spatiotemporal Video Patterns towards Robust Action Retrieval,” 
Neurocomputing, vol. 105, pp. 61-69, 2013. 

[2] L. Wang, Y. Z. Wang, T. T. Jiang, D. B. Zhao and W. Gao, “Learning 
Discriminative Features For Fast Frame-based Action Recognition,” 
Pattern Recogn, vol. 46, pp. 1832-1840, 2013. 

[3] Q. Zhao, and H. Tao, “A Motion Observable Representation Using 
Color Correlogram and Its Applications to Tracking,” Comput. Vis. 
Image Und, vol. 113, pp. 273-290, 2009. 

[4] H. Lu, W. L. Zou, H. S. Li, Y. Zhang, and S. M. Fei, “Edge and Color 
Contexts Based Object Representation and Tracking,” Optik, vol. 
126, pp. 148-152, 2015. 

[5] T. Z. Zhang, S. Liu, C. S. Xu, and H. Q. Lu, “Mining Semantic Context 
Information for Intelligent Video Surveillance of Traffic Scenes,” IEEE 
Trans. Ind. Inf.,vol.  9, pp. 149-160, 2013. 

[6] C. Plant, A. Zherdin, C. Sorg, and A. Meyer-Baese, “Wohlschläger A. 
M. Mining Interaction Patterns among Brain Regions by Clustering,” 
IEEE Trans. Knowl. Data En.,vol. 26, pp. 2237-2249, 2014. 

 

 

 

 

 

 

 

[7] Y. N. Zhang, X. M. Tong, T. Yang, and W. G. Ma, “Multi-Model 
Estimation Based Moving Object Detection for Aerial Video,” Sensors, 
vol. 15, pp. 8214-8231, 2015. 

[8] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based Object 
Tracking,”  IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, pp. 564-
575, 2003. 

[9] Z. Liu, H. Shen, G. Y. Feng, D. W. Hu, “Tracking Objects Using Shape 
Context Matching,” Neurocomputing, vol. 83, pp. 47-55, 2012. 

[10] K. H. Zhang, L. Zhang, Q. S. Liu, D. Zhang, and M.H. Yang, “Fast 
Visual Tracking via Dense Spatio-Temporal Context Learning,” In 
Proceedings of the 2014 European Conference on Computer Vision 
(ECCV), Zurich, Switzerland, 6-12 September 2014,  pp. 1-15.   

[11] Z. J. Ji, and W.Q. Wang, “Object Tracking Based on Local Dynamic 
Sparse Model,”  J. Vis. Commun. Image R., vol. 28, pp.  44-52, 2015. 

[12] C. A. Bhatt, and M. S. Kankanhalli, “Multimedia Data Mining: State of 
the Art and Challenges,” Multimed. Tools Appl., vol. 51, pp. 35-76, 
2011.  

[13] A. Chemchem, and H. Drias, “From Data Mining to Knowledge 
Mining: Application to Intelligent Agents,” Expert Syst. Appl., vol. 42, 
pp. 1436-1445, 2015. 

[14] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data Clustering: a Review,” 
ACM Comput. Surv., vol. 31, pp. 264-323, 1999. 

[15] C. R. Angel, C. C. Juan, and A. G. Fabio, “Visual Pattern Mining in 
Histology Image Collections Using Bag of Features,” Artif. Intell. 
Med., vol. 52, pp. 91-106, 2011. 

[16] R. O. Duda, P. E. Hart, and D. G. Stork, in: Pattern Classication, 2nd 
Edition, New Jersey: Wiley, 2001.  

[17] M. Yang, Y. Wu, and G. Hua, “Context-Aware Visual Tracking,” IEEE 
Trans. Pattern Anal. Mach. Intell., vol. 31, pp. 1195-1209, 2009. 

[18] H. Grabner, J. Matas, L.V. Gool, and P. Cattin, “Tracking the Invisible: 
Learning Where the Object Might be,” In Proceedings of the 2010 
IEEE conference on Computer Vision and Pattern Recognition 
(CVPR), San Francisco, CA, USA, 13-18 June 2010, pp. 1285-1292. 

[19] H. Lu, H. S. Li, W. L. Zou, S. M. Fei, “A Robust Algorithm for 
Tracking Object under Occlusion and Illumination Change,” In 
Proceedings of the 2012 IEEE conference on Control, Automation, 
Robotics and Vision (ICARCV), Guang Zhou, China, 5-7 December 
2012, pp. 1354-1459.  

 


